Difference between revisions of "ATP-Binding Cassette Transporters"

From ISMOC
Jump to: navigation, search
(Reaction)
(Parameters)
Line 49: Line 49:
  
 
== Parameters ==
 
== Parameters ==
{|class="wikitable sortable"
 
|+  style="text-align: left;" | Michaelis-Menten Constants
 
|-
 
! Value
 
! Units
 
! Species
 
! Notes
 
! Reference
 
|-
 
|0.0109 ± 0.0041
 
|mM
 
|Human
 
|Substrate: LTC4
 
pH 7.0, 37°C, recombinant MRP2, using 4mM MgATP and 5g of isolated membranes.
 
|<ref name="Yas2007"> [http://ac.els-cdn.com/S0928098708003618/1-s2.0-S0928098708003618-main.pdf?_tid=a147bd90-1dc8-11e6-9405-00000aab0f26&acdnat=1463666001_5a08a971497da36ce8a604f84caadfc2 Yasunaga M. "Molecular cloning and functional characterization of cynomolgus monkey multidrug resistance-associated protein 2 (MRP2)''  Eur. J. Pharm. Sci. 35, 326-334 (2008)]</ref> 
 
|-
 
|0.0000366 ± 0.0000038
 
|mM
 
|Human
 
|Substrate LTC4, 37 °C, 4 mM ATP,
 
|<ref name="Mao2000"> [http://www.jbc.org/content/275/44/34166.full.pdf Zeng H. "Transport of amphipathic anions by human multidrug resistance protein 3''  J. Biol. Chem. 275, 34166-34172 (2000)]</ref>
 
|-
 
|5.3E-3 ± 2.6E-3
 
|mM
 
|Human
 
|4 mM ATP, 37°C, 5–10 ml of membrane vesicle suspension (30
 
mg protein).
 
|<ref name="Zeng2000"> [http://cancerres.aacrjournals.org/content/60/17/4779.full.pdf "Functional reconstitution of substrate transport by purified multidrug resistance protein MRP1 (ABCC1) in phospholipid vesicles''  Cancer Res. 60, 4779-4784 (2000)]</ref>
 
|-
 
|0.1954 ± 0.0612
 
|mM
 
|Human
 
|pH 7.0, 37°C, recombinant MRP2,
 
Substrate: 17beta-estradiol 17-(beta-D-glucuronide)
 
|<ref name="Yas2007"> [http://ac.els-cdn.com/S0928098708003618/1-s2.0-S0928098708003618-main.pdf?_tid=a147bd90-1dc8-11e6-9405-00000aab0f26&acdnat=1463666001_5a08a971497da36ce8a604f84caadfc2 Yasunaga M. "Molecular cloning and functional characterization of cynomolgus monkey multidrug resistance-associated protein 2 (MRP2)''  Eur. J. Pharm. Sci. 35, 326-334 (2008)]</ref>
 
|-
 
|0.1097 ± 0.0391
 
|mM
 
|Human
 
|pH 7.0, 37°C, recombinant MRP2,
 
Substrate: Estrone glucuronide
 
|<ref name="Yas2007"> [http://ac.els-cdn.com/S0928098708003618/1-s2.0-S0928098708003618-main.pdf?_tid=a147bd90-1dc8-11e6-9405-00000aab0f26&acdnat=1463666001_5a08a971497da36ce8a604f84caadfc2 Yasunaga M. "Molecular cloning and functional characterization of cynomolgus monkey multidrug resistance-associated protein 2 (MRP2)''  Eur. J. Pharm. Sci. 35, 326-334 (2008)]</ref>
 
|-
 
|0.0207
 
|mM
 
|Human
 
|pH 7.4, 37°C, Substrate: Progesterone, Expression vector: Human HepG2 hepatoma
 
|<ref name="Fong2007"> [https://www.thieme-connect.com/products/ejournals/html/10.1055/s-2007-967120 W. Fong "Schisandrol A from Schisandra chinensis Reverses P-Glycoprotein-Mediated Multidrug Resistance by Affecting Pgp-Substrate Complexes'' Planta Med 2007; 73(3): 212-220]</ref>
 
|-
 
|}
 
 
 
No data available on the turnover of ABCC4 transporter therefore based upon estimates made by http://book.bionumbers.org/what-are-the-rates-of-membrane-transporters/
 
{|class="wikitable sortable"
 
|+  style="text-align: left;" | Turnover Number
 
|-
 
! Value
 
! Units
 
! Transporter
 
! Notes
 
! Reference
 
|-
 
|3.5
 
|min-1
 
|Glucose transporter ptsI
 
|Organism: Bacteria Escherichia coli
 
Back of the envelope calculation by BioNumbers: http://bionumbers.hms.harvard.edu/bionumber.aspx?&id=102931
 
|<ref name="Waygood1980"> [https://www.ncbi.nlm.nih.gov/pubmed/6992959?dopt=Abstract Waygood EB ''Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system of Escherichia coli. Purification to homogeneity and some properties.''Can J Biochem. 1980 Jan;58(1):40-8.]</ref>
 
|-
 
|0.33 - 0.83
 
|min-1
 
|Rate of transport of H+/Lactose transporter
 
|Organism: Bacteria Escherichia coli
 
Back of the envelop calculation on bionumbers http://bionumbers.hms.harvard.edu/bionumber.aspx?&id=103159
 
|<ref name="Naftalin2007"> [https://www.ncbi.nlm.nih.gov/pubmed/17325012?dopt=Abstract Naftalin R. J. ''ELactose permease H+-lactose symporter: mechanical switch or Brownian ratchet?''Biophys J. 2007 May 15;92(10):3474-91. Epub 2007 Feb 26.]</ref>
 
|-
 
|3.28
 
|min-1
 
|Catalytic Rate of transporter HXT7
 
|Organism: Budding yeast Saccharomyces cerevisiae
 
Back of the envelope calculation http://bionumbers.hms.harvard.edu/bionumber.aspx?&id=101737
 
|<ref name="Ye2001"> [https://www.ncbi.nlm.nih.gov/pubmed/11561293?dopt=Abstract Ye L. ''Expression and activity of the Hxt7 high-affinity hexose transporter of Saccharomyces cerevisiae''Yeast. 2001 Sep 30;18(13):1257-67.]</ref>
 
|-
 
|}
 
 
{|class="wikitable sortable"
 
|+  style="text-align: left;" | Vmax ***
 
|-
 
! Value
 
! Units
 
! Species
 
! Notes
 
! Reference
 
|-
 
|0.00019 ± 1.96e-5
 
|mmol/min/mg protein
 
|Human
 
|Substrate: LTC4
 
pH 7.0, 37°C, recombinant MRP2, using 4mM MgATP and 5g of isolated membranes.
 
|<ref name="Yas2007"> [http://ac.els-cdn.com/S0928098708003618/1-s2.0-S0928098708003618-main.pdf?_tid=a147bd90-1dc8-11e6-9405-00000aab0f26&acdnat=1463666001_5a08a971497da36ce8a604f84caadfc2 Yasunaga M. "Molecular cloning and functional characterization of cynomolgus monkey multidrug resistance-associated protein 2 (MRP2)''  Eur. J. Pharm. Sci. 35, 326-334 (2008)]</ref> 
 
|-
 
|1.25e-7 ± 1.2e-8
 
|mmol/min/mg
 
|Human
 
|Substrate LTC4, 37 °C, 4 mM ATP,
 
|<ref name="Mao2000"> [http://www.jbc.org/content/275/44/34166.full.pdf Mao Q. "Functional reconstitution of substrate transport by purified multidrug resistance protein MRP1 (ABCC1) in phospholipid vesicles''  J. Biol. Chem. 275, 34166-34172 (2000)]</ref>
 
|-
 
|2.02e-8 ± 5.9e-9
 
|mmol/mg/min
 
|Human
 
|4 mM ATP, 37°C, 5–10 ml of membrane vesicle suspension (30
 
mg protein).
 
|<ref name="Zeng2000"> [http://cancerres.aacrjournals.org/content/60/17/4779.full.pdf "Functional reconstitution of substrate transport by purified multidrug resistance protein MRP1 (ABCC1) in phospholipid vesicles''  Cancer Res. 60, 4779-4784 (2000)]</ref>
 
|-
 
|}
 
 
 
{|class="wikitable sortable"
 
|+  style="text-align: left;" | Abundance
 
|-
 
! Value
 
! Units
 
! Species
 
! Notes
 
! Reference
 
|-
 
|5.15
 
|ppm
 
|Human
 
|Expression Vector: Stomach
 
Enzyme: ABCC4
 
pH: 7.5
 
Temperature: 37 °C
 
|<ref name="Wilhelm2014"> [http://www.nature.com/nature/journal/v509/n7502/pdf/nature13319.pdf M. Wilhelm ''Mass-spectrometry-based draft of the human proteome'' Nature, 2014 509, 582–587]</ref>
 
|-
 
|5.94
 
|ppm
 
|Human
 
|Expression Vector: Lung
 
Enzyme: ABCC4
 
pH: 7.5
 
Temperature: 37 °C
 
|<ref name="Kim2014"> [http://www.nature.com/nature/journal/v509/n7502/pdf/nature13302.pdf M. Kim ''A draft map of the human proteome'' Nature, 2014 509, 575–581]</ref>
 
|-
 
|2.66
 
|ppm
 
|Human
 
|Expression Vector: Gut
 
Enzyme: ABCC4
 
pH: 7.5
 
Temperature: 37 °C
 
|<ref name="Kim2014"> [http://www.nature.com/nature/journal/v509/n7502/pdf/nature13302.pdf M. Kim ''A draft map of the human proteome'' Nature, 2014 509, 575–581]</ref>
 
|-
 
|}
 
  
 
== References ==
 
== References ==

Revision as of 14:52, 26 September 2017

Return to overview

When a cell produces eicosanoids they are immediately transported into the extracellular compartment, as they are cytotoxic \cite{Pompeia2002}. An ATP-binding cassette (ABC) transporter has been assumed as the method of transportation across the cellular membrane for reactions 22-43.

An ABC transporter was assumed as the export transporter of lipids because it is widely reported as transporting organic molecules (ref). Due to the increased amount of free energy provided by the ATP hydrolysis reaction, the transporter is able to relocate molecules against a concentration gradient. The model only contains an inward facing transporter, although in reality there is also an outward facing variant.

In the literature a prostaglandin transporter is reported (Schuster2015), but due to the lack of kinetic analysis of the transporter, the ABC transporter was modelled. We assume that rate of transportation across the membrane may be similar between transporters, however once specific transporter kinetics become available, the model will be updated.

The rate law was designed to encompass the basic principles of an ATP transporter, e.g. the consumption of the internal lipid is directly proportional to amount of transporters. The ratio of substrate and product describes how the gradient would affect the rate of transportation, for example if the concentration of the external lipid equalled that of the internal, transportation would cease. The final term in the equation is the driving force for the transportation, calculated using Gibbs free energy of ATP hydrolysis, the gas constant, temperature and the concentrations of ATP and ADP. As the reformation of ATP is considerably faster than the lipid transporter the ratio was assumed to remain constant.



Reaction

Chemical equation

 Intracellular Lipid + 2ATP + 2H2O \rightleftharpoons Extracellular Lipid + 2ADP + 2Pi + 2H(+)

Rate equation

Parameters

References


Related Reactions