Kinetic model of Central Metabolism

From ISMOC
Revision as of 13:53, 21 March 2014 by Galib36 (talk | contribs)
Jump to: navigation, search

A kinetic model of glycolysis with serine activation is constructed from the literature data [1][2][3][4].

Description of the model

Click on a reaction to have more information

GLUTHKHPIPFK-1ALDOTPIGAPDHPGKPGAMENOPYKLDHLACoutMPMAKATPasePPPTKGPGSDHasesUPPPGLMSHMTSERoutGlYCoutPSPPSAPDHGlycolysis with Serine Activation
About this image

Reactions

Details of the abbreviations for this model is listed here

Initial concentration of the metabolites can be found here

Model File

Global parameters

The Vmax value in the paper "Modeling cancer glycolysis" is given in  U \times \text{(mg total cellular protein)}^{-1} unit [1]. To homogenize the units it is then converted back to \frac{mM}{min} by multiplying  U \times \text{(mg total cellular protein)}^{-1} with 65 as the HeLa cell was incubated in  65 \frac{\text{mg protein}}{\text{mL cell volume}}.

References

  1. 1.0 1.1 Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011). Modeling cancer glycolysis. Biochim Biophys Acta, 1807:755–767 (doi)
  2. Turnaev II, Ibragimova SS, Usuda Y et al (2006). Mathematical modeling of serine and glycine synthesis regulation in Escherichia coli. Proceedings of the fifth international conference on bioinformatics of genome regulation and structure 2:78–83
  3. Smallbone K, Stanford NJ (2013). Kinetic modeling of metabolic pathways: Application to serine biosynthesis. In: Systems Metabolic Engineering, Humana Press. pp. 113–121
  4. Palm, D.C. (2013). The regulatory design of glycogen metabolism in mammalian skeletal muscle (Ph.D.). University of Stellenbosch