Phosphofructokinase type 1

From ISMOC
Jump to: navigation, search

The enzyme Phosphofructokinase Type-1 uses another ATP molecule to transfer a phosphate group to Fru6P to form fructose 1, 6-bisphosphate. PFK-1 is an allosteric enzyme showing cooperative behaviour with Fru6P and hyperbolic kinetics with ATP.

Chemical equation

 Fru6P + ATP \rightleftharpoons Fru1,6BP + ADP

Rate equation

The concerted transition model of Monod, Wyman and Changeux (MWC model) is used as a rate equation for this tetrameric enzyme for considering exclusive ligand binding (F6P, activators and inhibitors) together with mixed type activation, (Fru2,6BP or AMP or Pi) [1].


v = Vm \left(\frac{\frac{[ATP]}{Km_{ATP}}}{1 + \frac{[ATP]}{Km_{ATP}} }\right ) \left ( \frac{ 1 + \frac{\beta[Fru2,6BP]}{ \alpha Ka_{Fru2,6BP} } }{ 1 + \frac{[Fru2,6BP]}{ \alpha Ka_{Fru2,6BP} } }   \right ) 
\left( \frac{\frac{[Fru6P]\left(1+\frac{[Fru2,6BP]}{[\alpha Ka_{Fru2,6BP}]}\right)}{Km_{Fru6P}\left(1 + \frac{[Fru2,6BP]}{Ka_{Fru2,6BP}}\right)} \left[1 + \frac{[Fru6P]\left(1+\frac{[Fru2,6BP]}{\alpha Ka_{Fru2,6BP}}\right)}{Km_{Fru6P}\left(1 + \frac{[Fru2,6BP]}{Ka_{Fru2,6BP}}\right)} \right]^3}
{ \frac{L\left( 1 + \frac{[CIT]}{Ki_{CIT}}\right)^4\left(1 + \frac{[ATP]}{Ki_{ATP}}\right)^4}{\left(1+\frac{[Fru2,6BP]}{Ka_{Fru2,6BP}}\right)^4} + \left[1 + \frac{Fru6P\left(1+\frac{Fru2,6BP}{\alpha Ka_{Fru2,6BP}}\right)}{Km_{Fru6P}\left(1 + \frac{[Fru2,6BP]}{Ka_{Fru2,6BP}}\right)}  \right]^4 }  - \left( \frac{\frac{[ADP][Fru1,6BP]}{K_{ADP}K_{Fru1,6BP}K_{eq}}}{\frac{[ADP]}{K_{ADP}} + \frac{[Fru1,6BP]}{K_{Fru1,6BP}} + \frac{[ADP][Fru1,6BP]}{K_{ADP}K_{Fru1,6BP}} + 1 } \right) \right)

Parameter values

Parameter Value Units Organism Remarks
Vm_{r} 0.031 [1]  mM \times min^{-1} HeLa cell line Moreno-Sánchez, Marín-Hernández, Encalada & Saavedra, unpublished results
Km_{Fru6P} 1.0 [1] mM
Km_{ATP} 0.021[1] mM
Ki_{ATP} 20[1] mM
Ki_{CIT} 6.8[1] mM
Ka_{Fru2,6BP} 8.4 \times 10^{-4}[1] mM
\alpha 0.32[1] Dimensionless
\beta 0.98[1] Dimensionless
L 4.1[1] Dimensionless
K_{ADP} 5[1] mM
K_{Fru1,6BP} 5[1] mM
K_{eq} 247[1] mM Recalculated from the ΔGº´ = - 31.4 KJ mol^{-1}

Parameters with uncertainty

  • The \alpha and \beta in the rate equation represents the factors by which the ligand affinity and catalytic capacity are modified in the presence of an allosteric activatory [2]. As Fru2,6BP is the only activator in our model we considered the \alpha and \beta value of Fru2,6BP, \alpha_{Fru2,6BP} = 0.75\pm 0.4 and \beta_{Fru2,6BP} = 1.18\pm 0.17. These two values are measured in the presence of 140 \text{mM K}^{+} medium [2].
  • The Vm value is reported as 0.078 \pm 0.043 U \times (mg protein)^{-1} [2]. HeLa cells were harvested at a concentration of 65 mg protein/ml. Converting Vm to mM/min becomes  5.07 \pm 2.795 again in the presence of 140 \text{mM K}^{+}.
  • Km_{ADP} = 1.4 for Thermotoga maritima is being reported in Hansen, T., M. Musfeldt et. al. [3] and Km_{Fru1,6BP} = 16.7 for Desulfurococcus amylolyticus is reported in Hansen T, Schönheit P. et. al.[4]. The mean and std. dev. is calculated as 0.945 \pm 0.454
  • Similarly for Km_{Fru1,6BP} = 7.6 in Thermotoga maritima is being reported in Hansen, T., M. Musfeldt et. al. [3] and Km_{ADP} = 0.49 in Desulfurococcus amylolyticus is reported in Hansen T, Schönheit P. et. al.[4]. The mean and std. dev. is calculated as 12.15 \pm 4.54
  • Four Keq values have been reported in the SilicoTrypWiki (Wikipedia for insilico modelling of Trypanosome) for Phosphofructokinase: 308.4, 254, 1035, 800[5]. As the K_{eq} value does not depend on the organism, the mean and the standard deviation can be calculated from these 4 values collected for Trypanosome.[6]. The mean and std. dev. of this value is  599.35 \pm 329.38


Parameter Value Units Organism
Vm_{f}  5.07 \pm 2.795  mM \times min^{-1} HeLa Cell line
Km_{Fru6P} 1.1 \pm 0.4 mM HeLa Cell line
Km_{ATP} 0.0292 \pm 0.0015[2] mM HeLa Cell line
Ki_{ATP} 2.0 \pm 0.1[7] mM Human muscle
Ki_{CIT} 6.7 \pm 3.8 mM HeLa Cell line
Ka_{Fru2,6BP} 0.00099 \pm 0.00014 mM HeLa Cell line
\alpha 0.75\pm 0.4 Dimensionless HeLa Cell line
\beta 1.18\pm 0.17 Dimensionless HeLa Cell line
L 6.6 \pm 5 Dimensionless HeLa Cell line
K_{ADP} 0.945 \pm 0.454 mM Thermotoga maritima & Desulfurococcus amylolyticus
K_{Fru1,6BP} 12.15 \pm 4.54 mM Thermotoga maritima & Desulfurococcus amylolyticus
K_{eq}  599.35 \pm 329.38 Trypanosome

Equilibrium constant

Equilibrium constant Conditions Source
308.4 pH=7, T=25°C Lehninger, (2008)[8] p 553:

\Delta G' = -14.2\ kJ.mol^{-1}, Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{14200}{8.31*298.15}) \approx 308.4

254 pH=7, T=25°C Lehninger, (1975)[9] p 396.
1035 pH=7, T=25°C Voet et al.[10] from Newshole et al. (1973) [11]p 97:

\Delta G' = -17.2\ kJ.mol^{-1}, Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{17200}{8.31*298.15}) \approx 1035

800 T=298.15 K; pH=7.0; Method: calorimetry; Buffer: Tris (0.1 mol dm-3) + HCl. NIST database "Thermodynamics of Enzyme-Catalyzed Reactions" entry [75BOH/SCH_551] from Bvhme et al. (1975)[12]
  • The Average from these values are 599.35 \pm 380.33

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011). Modeling cancer glycolysis. Biochim Biophys Acta, 1807:755–767 (doi)
  2. 2.0 2.1 2.2 2.3 R. Moreno-Sánchez, A. Marín-Hernández, J.C. Gallardo-Pérez, H. Quezada, R. Encalada, S. Rodríguez-Enríquez et al. (2012), Phosphofructokinase type 1 kinetics, isoform expression, and gene polymorphisms in cancer cells, J Cell Biochem, 113, pp. 1692–1703
  3. 3.0 3.1 Hansen, T., M. Musfeldt, and P. Schonheit (2002), ATP-dependent 6-phosphofructokinase from the hyperthermophilic bacterium Thermotoga maritima: characterization of an extremely thermophilic, allosterically regulated enzyme. Arch. Microbiol. 177:401-409
  4. 4.0 4.1 Hansen T, Schönheit P. (2003),Purification and Characterization of the MQH2:NO Oxidoreductase from the Hyperthermophilic Archaeon Pyrobaculum aerophilum, J Biol Chem, 278 (38), 35861-35868
  5. [Silicotryp]
  6. F. Achcar, E.J. Kerkhoven, B.M. Bakker, M.P. Barrett, R. Breitling (2012), Dynamic modelling under uncertainty: the case of Trypanosoma brucei energy metabolism, PLoS Comput Biol, 8, p. e1002352
  7. Brueser, A.; Kirchberger, J.; Kloos, M.; Straeter, N.; Schoeneberg, T. (2012), Functional linkage of adenine nucleotide binding sites in mammalian muscle 6-phosphofructokinase, J. Biol. Chem. 287, 17546-17553 (2012)
  8. David L. Nelson, Michael M. Cox (2008), Lehninger Principles of Biochemistry (5th edn), W. H. Freeman and Company
  9. Lehninger, A.L. (1975) Biochemistry (2nd edn), Worth
  10. Voet, D., Voet., J.G. and Pratt, C. W. (1999) Fundamentals of biochemistry, Wiley
  11. Newshole, E.A. and Stuart, C. (1973) Regulation in Metabolism, Wiley
  12. Bvhme, H.-J., Schellenberger, W. and Hofmann, E. (1975) Acta Biol. Med. Germ. 34(1):15-20. (pmid: 241184)