Degradation of C

From ISMOC
Revision as of 19:09, 17 October 2015 by Areti ts (talk | contribs) (Parameters)
Jump to: navigation, search

The SCB protein (C) degrades.

Go back to overview
About this image

Chemical equation

C\rightarrow \varnothing

Rate equation

 r= d_{C}\cdot[C]

Parameters

The parameter of this reaction is the degradation rate of C (d_{C}).

Name Value Units Value in previous GBL models [1] [2] Remarks-Reference
d_{C} 0-0.001 [3] [4]  min^{-1} [5] [6] 6.7 \cdot 10^{-5} s^{-1}[1][2]

(Range tested: 0-2 \cdot 10^{-4} s^{-1})

(Bistability range: 0-0.0085 s^{-1}[1]

and 6.7 \cdot 10^{-6}-6.7 \cdot 10^{-3} s^{-1}[2])

Chen et al. empirically calculated the degradation rate of the autoinducer PAI2 in Pseudomonas aeruginosa cultures and reported a best-fit degradation constant of 0.195 h^{-1} (0.00325 min^{-1}).
Chen et al. 2005[4]

Additionally, the degradation rates of the quorum sensing autoinducer AHL have been measured in vitro by Kaufmann et al. and the reported rates for different AHLs are between 4.77 \cdot 10^{-6}-3.07 \cdot 10^{-5} s^{-1} (2.86 \cdot 10^{-4}-1.84 \cdot 10^{-3} min^{-1}). Weber et al. also reported that the degradation rate of AHL in vivo has been estimated, and is within the range 5 \cdot 10^{-3}-2 \cdot 10^{-2} min^{-1}.

  • Kaufmann et al. 2005[6]
  • Weber et al. 2011[5]
Name Value Units Origin Remarks
d_{C} 0-0.001 [7] min^{-1} Degradation rate of acyl-homoserine lactone (AHL) The assumption that the degradation of SCB1 is slower than

AHL is made, as described in Takano(2006)[3]

Parameters with uncertainty

The most plausible parameter value for the d_{C} is decided to be  0.0002 min^{-1} and the confidence interval  2 . This means that the mode of the PDF is 0.0002 and the range where 95% of the values are found is between 0.0001 and 0.0004 min^{-1}.

The probability distribution for the parameter, adjusted accordingly in order to reflect the above values, is the following:

500px

The location and scale parameters of the distribution are:

Parameter μ σ
d_{C} -8.4046 0.3356

References

  1. 1.0 1.1 1.2 S. Mehra, S. Charaniya, E. Takano, and W.-S. Hu. A bistable gene switch for antibiotic biosynthesis: The butyrolactone regulon in streptomyces coelicolor. PLoS ONE, 3(7), 2008.
  2. 2.0 2.1 2.2 A. Chatterjee, L. Drews, S. Mehra, E. Takano, Y.N. Kaznessis, and W.-S. Hu. Convergent transcription in the butyrolactone regulon in streptomyces coelicolor confers a bistable genetic switch for antibiotic biosynthesis. PLoS ONE, 6(7), 2011.
  3. 3.0 3.1 E. Takano. γ-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Current Opinion in Microbiology, 9(3):287–294, 2006. Cite error: Invalid <ref> tag; name "Takano2006" defined multiple times with different content
  4. 4.0 4.1 Chen CC., Riadi L., Suh S.J., Ohman D.E., Ju L.K. Degradation and synthesis kinetics of quorum-sensing autoinducer in Pseudomonas aeruginosa cultivation. J Biotechnol. 2005;117(1):1-10.
  5. 5.0 5.1 Weber M., Buceta J. Noise regulation by quorum sensing in low mRNA copy number systems. BMC Systems Biology 2011, 5:11
  6. 6.0 6.1 Kaufmann GF, Sartorio R, Lee SH, Rogers CJ, Meijler MM, Moss JA, Clapham B, Brogan AP, Dickerson TJ, Janda KD. Revisiting quorum sensing: Discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc Natl Acad Sci U S A. 2005;102(2):309-14.
  7. S. Basu, Y. Gerchman, C. H. Collins, F. H. Arnold & R. Weiss. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130-1134, 2005