Difference between revisions of "Limonene-6-Hydroxylase (L6H)"

From ISMOC
Jump to: navigation, search
(Created page with "You can go back to main page of the kinetic model [http://www.systemsbiology.ls.manchester.ac.uk/wiki/index.php/Kinetic_Model_of_Monoterpenoid_Biosynthesis_Wiki here]. == Wha...")
 
(Detailed descriptions of kinetic data used in this model)
Line 213: Line 213:
 
|}
 
|}
  
==== Detailed descriptions of kinetic data used in this model ====
+
==== Detailed descriptions of kinetic values used in this model ====
  
A more detailed description of the kinetic values obtained from the literature for this model can be found [[Limonene-6-Hydroxylase: Detailed description of the kinetics | here]].
+
A more detailed description of the kinetic values listed above can be found [[Limonene-6-Hydroxylase: Detailed description of the kinetics | here]].
  
 
== Simulations ==
 
== Simulations ==

Revision as of 14:41, 16 March 2016

You can go back to main page of the kinetic model here.

What we know

Issues

Strategies

Reaction catalysed



Limonene + NADPH + O_2 \rightleftharpoons (-)-trans-isopiperitenol + NADP^+ + H_2O

Metabolite Background Information

Long metabolite names are abbreviated in the model for clarity and standard identification purposes.

Metabolite Abbreviation Chemical Formula Molar mass (g/mol) ChEBI ChEMBL PubChem
geranyl diphosphate GPP C10H20O7P2 314.209 17211 41432 445995
(-)-4S-limonene Limonene C10H16 136.24 15384 449062 22311 or 439250
diphosphate PP O7P2 173.94 644102

Equation Rate



V_\mathrm{LimSynth} =  Vmax_\mathrm{forward} * \cfrac {\cfrac{[GPP]}{Km_\mathrm{GPP}} * \left ( 1 - \cfrac {[Limonene]*[PP]}{[GPP]*K_\mathrm{eq}} \right )}{1 + \cfrac {[GPP]}{Km_\mathrm{GPP}} + \cfrac {[Limonene]}{Km_\mathrm{Limonene}}  + \cfrac {[PP]}{Km_\mathrm{PP}}  + \cfrac {[Limonene]*[PP]}{Km_\mathrm{Limonene}*Km_\mathrm{PP}}}


Parameter Description Reference
VLimSynth Reaction rate for Limonene Synthase ref
Vmaxforward Maximum reaction rate towards the production of limonene ref
KmGPP Michaelis-Menten constant for GPP ref
KmLimonene Michaelis-Menten constant for Limonene ref
KmPP Michaelis-Menten constant for PP ref
Keq Equilibrium constant ref
[GPP] GPP concentration ref
[Limonene] Limonene concentration ref
[PP] PP concentration ref

Strategies for estimating the kinetic parameter values

Calculating the Equilibrium Constant

The equilibrium constant can be calculated using the Van't Hoff Isotherm equation:



K_\mathrm{eq} = exp \left ( \cfrac {-?G^{°'}}{RT} \right )




 = exp \left (  \cfrac {-(XY \text { kJmol}^{-1})}{ (8.31 \text{ JK}^{-1} \text { mol}^{-1} * 289 K} \right )



 = exp \left (  \cfrac { XY \text { kJmol}^{-1} }{ 2401.59 \text{ JK}^{-1}\text { mol}^{-1} }\right)


= exp \left ( \cfrac{ XY \text { Jmol}^{-1}}{2401.59 \text{ JK}^{-1}\text { mol}^{-1}} \right)



=exp \left ( XY \right )


= (INSERT RESULT)


where;

Keq Equilibrium constant
-?G° Gibbs free energy change. For (INSERT ENZYME) it is (INSERT VALUE) kJmol-1
R Gas constant with a value of 8.31 JK-1mol-1
T Temperature which is always expressed in kelvin

Standard Gibbs Free energy

Standard Gibbs Free energy for (INSERT ENZYME) from MetaCyc (EC 4.2.3.16) is (INSERT VALUE) kcal/mol [1].

SI derived unit for Gibbs free energy is Joules per mol (J mol-1). 1 kJ·mol-1 is equal to 0.239 kcal·mol-1.

Therefore, the Gibbs free energy for (INSERT ENZYME) in kJ mol-1 is:

 

 \cfrac {1}{0.239 kcal.mol^-1} * (INSERT VALUE) kcal.mol^-1


= (INSERT RESULT) kJmol^-1

Extracting Information from (INSERT SUBSTRATE/PRODUCT) Production Rates

Amount produced (mg/L) Time (H) Organism Description Reaction Flux (µM/s)
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z

Published Kinetic Parameter Values

Km (mM) Vmax Kcat (s-1) Kcat/Km Organism Description
0.00125 - - Z A -> B
0.0018 - - - Z A -> B
Y Y Y Y Z A -> B
Y Y Y Y Z A -> B
Y Y - - Z A -> B
Y - Y - Z GPP -> B
Y - Y - Z GPP -> B
x - y - Z. A -> B

Detailed descriptions of kinetic values used in this model

A more detailed description of the kinetic values listed above can be found here.

Simulations

References