Difference between revisions of "Limonene-3-hydroxylase (L3H)"

From ISMOC
Jump to: navigation, search
(Created page with "You can go back to main page of the kinetic model [http://www.systemsbiology.ls.manchester.ac.uk/wiki/index.php/Kinetic_Model_of_Monoterpenoid_Biosynthesis_Wiki here]. == Wha...")
 
(Metabolite Background Information)
Line 30: Line 30:
 
! ChEMBL
 
! ChEMBL
 
! PubChem
 
! PubChem
 +
! BRENDA
 +
! PlantCyc
 
|-
 
|-
| geranyl diphosphate
+
| limonene-3-hydroxylase
| GPP
+
| L3H
| C<sub>10</sub>H<sub>20</sub>O<sub>7</sub>P<sub>2</sub>
+
|  
| 314.209
+
| 56.1 kD
| 17211
+
|  
| 41432
+
|  
| 445995
+
|  
 +
| 1.14.13.47
 +
| MONOMER-6761
 
|-
 
|-
 
| (-)-4S-limonene
 
| (-)-4S-limonene
Line 46: Line 50:
 
| 449062
 
| 449062
 
| 22311 or 439250
 
| 22311 or 439250
 +
|
 +
|
 
|-
 
|-
| diphosphate
+
| (-)-trans-isopiperitenol
| PP
+
|  
| O<sub>7</sub>P<sub>2</sub>
+
| C<sub>10</sub>H<sub>16</sub>O
| 173.94
+
| 152.23344
 +
| 15406
 +
|
 +
| 439410
 +
|
 +
|
 +
|-
 +
| NADPH
 +
|
 +
| C<sub>21</sub>H<sub>30</sub>N<sub>7</sub>O<sub>17</sub>P<sub>3</sub>
 +
| 745.42116
 +
| 16474
 +
|
 +
|
 +
|-
 +
| NADP<sup>+</sup>
 +
|
 +
| C<sub>21</sub>H<sub>29</sub>N<sub>7</sub>O<sub>17</sub>P<sub>3</sub>
 +
| 744.41322
 +
| 18009
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| Dioxygen
 +
| O<sub>2</sub>
 +
| O<sub>2</sub>
 +
| 31.99880
 +
| 15379
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| water
 +
| H<sub>2</sub>O
 +
| H<sub>2</sub>O
 +
| 18.01530
 +
| 15377
 +
|
 +
|
 
|
 
|
 
|
 
|
| 644102
 
 
|}
 
|}
  

Revision as of 11:47, 8 March 2016

You can go back to main page of the kinetic model here.

What we know

Issues

Strategies

Reaction catalysed



Limonene + NADPH + O_2 \rightleftharpoons (-)-trans-isopiperitenol + NADP^+ + H_2O

Metabolite Background Information

Long metabolite names are abbreviated in the model for clarity and standard identification purposes.

Metabolite Abbreviation Chemical Formula Molar mass (g/mol) ChEBI ChEMBL PubChem BRENDA PlantCyc
limonene-3-hydroxylase L3H 56.1 kD 1.14.13.47 MONOMER-6761
(-)-4S-limonene Limonene C10H16 136.24 15384 449062 22311 or 439250
(-)-trans-isopiperitenol C10H16O 152.23344 15406 439410
NADPH C21H30N7O17P3 745.42116 16474
NADP+ C21H29N7O17P3 744.41322 18009
Dioxygen O2 O2 31.99880 15379
water H2O H2O 18.01530 15377

Equation Rate



V_\mathrm{LimSynth} =  Vmax_\mathrm{forward} * \cfrac {\cfrac{[GPP]}{Km_\mathrm{GPP}} * \left ( 1 - \cfrac {[Limonene]*[PP]}{[GPP]*K_\mathrm{eq}} \right )}{1 + \cfrac {[GPP]}{Km_\mathrm{GPP}} + \cfrac {[Limonene]}{Km_\mathrm{Limonene}}  + \cfrac {[PP]}{Km_\mathrm{PP}}  + \cfrac {[Limonene]*[PP]}{Km_\mathrm{Limonene}*Km_\mathrm{PP}}}


Parameter Description Reference
VLimSynth Reaction rate for Limonene Synthase ref
Vmaxforward Maximum reaction rate towards the production of limonene ref
KmGPP Michaelis-Menten constant for GPP ref
KmLimonene Michaelis-Menten constant for Limonene ref
KmPP Michaelis-Menten constant for PP ref
Keq Equilibrium constant ref
[GPP] GPP concentration ref
[Limonene] Limonene concentration ref
[PP] PP concentration ref

Strategies for estimating the kinetic parameter values

Calculating the Equilibrium Constant

The equilibrium constant can be calculated using the Van't Hoff Isotherm equation:



K_\mathrm{eq} = exp \left ( \cfrac {-ΔG^{°'}}{RT} \right )




 = exp \left (  \cfrac {-(XY \text { kJmol}^{-1})}{ (8.31 \text{ JK}^{-1} \text { mol}^{-1} * 289 K} \right )



 = exp \left (  \cfrac { XY \text { kJmol}^{-1} }{ 2401.59 \text{ JK}^{-1}\text { mol}^{-1} }\right)


= exp \left ( \cfrac{ XY \text { Jmol}^{-1}}{2401.59 \text{ JK}^{-1}\text { mol}^{-1}} \right)



=exp \left ( XY \right )


= (INSERT RESULT)


where;

Keq Equilibrium constant
-ΔG° Gibbs free energy change. For (INSERT ENZYME) it is (INSERT VALUE) kJmol-1
R Gas constant with a value of 8.31 JK-1mol-1
T Temperature which is always expressed in kelvin

Standard Gibbs Free energy

Standard Gibbs Free energy for (INSERT ENZYME) from MetaCyc (EC 4.2.3.16) is (INSERT VALUE) kcal/mol [1].

SI derived unit for Gibbs free energy is Joules per mol (J mol-1). 1 kJ·mol−1 is equal to 0.239 kcal·mol−1.

Therefore, the Gibbs free energy for (INSERT ENZYME) in kJ mol-1 is:

 

 \cfrac {1}{0.239 kcal.mol^-1} * (INSERT VALUE) kcal.mol^-1


= (INSERT RESULT) kJmol^-1

Extracting Information from (INSERT SUBSTRATE/PRODUCT) Production Rates

Amount produced (mg/L) Time (H) Organism Description Reaction Flux (µM/s)
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z

Published Kinetic Parameter Values

Km (mM) Vmax Kcat (s-1) Kcat/Km Organism Description
0.00125 - - - Z A -> B
0.0018 - - - Z A -> B
Y Y Y Y Z A -> B
Y Y Y Y Z A -> B
Y Y - - Z A -> B
Y - Y - Z GPP -> B
Y - Y - Z GPP -> B
x - y - Z. A -> B

Simulations

References