Limonene-3-hydroxylase (L3H)

From ISMOC
Jump to: navigation, search

You can go back to main page of the kinetic model here.


Reaction catalysed



Limonene + NADPH + O_2 \rightleftharpoons (-)-trans-isopiperitenol + NADP^+ + H_2O

Enzyme and Metabolite Background Information

Long metabolite names are abbreviated in the model for clarity and standard identification purposes.

Metabolite Abbreviation Chemical Formula Molar mass (g/mol) ChEBI ChEMBL PubChem BRENDA PlantCyc
limonene-3-hydroxylase L3H 56.1 kD 1.14.13.47 MONOMER-6761
(-)-4S-limonene limonene C10H16 136.24 15384 449062 22311 or 439250
(-)-trans-isopiperitenol isopiperitenol C10H16O 152.23344 15406 439410
NADPH C21H30N7O17P3 745.42116 16474
NADP+ C21H29N7O17P3 744.41322 18009
Dioxygen O2 O2 31.99880 15379
water H2O H2O 18.01530 15377

Equation Rate

Limonene-hydroxylase (L3H) is modelled using the reversible Michaelis-Menten equation.




V_\mathrm{L3H} =  Vmax_\mathrm{forward} * \cfrac {\left ( \cfrac{[limonene]}{Km_\mathrm{limonene}} * \cfrac {[NADPH]}{Km_\mathrm{NADPH}} \right ) * \left ( 1 - \cfrac {[isopiperitenol]*[NADP]}{[limonene]*[NADPH]*K_\mathrm{eq}} \right )} 
{ \left (1 + \cfrac {[NADPH]}{Km_\mathrm{NADPH}} + \cfrac {[NADP]}{Km_\mathrm{NADP}} \right )  + \left ( 1+ \cfrac {[limonene]}{Km_\mathrm{limonene}}  + \cfrac {[isopiperitenol]}{Km_\mathrm{isopiperitenol}} \right ) }


Parameter Description Reference
VL3H Reaction rate for Limonene-3-hydroxylase ref
Vmaxforward Maximum reaction rate towards the production of (-)-trans-isopiperitenol ref
Kmlimonene Michaelis-Menten constant for Limonene ref
Kmisopiperitenol Michaelis-Menten constant for (-)-trans-isopiperitenol ref
KmNADPH Michaelis-Menten constant for NADPH ref
KmNADP Michaelis-Menten constant for NADP+ ref
Keq Equilibrium constant ref
[limonene] Limonene concentration ref
[isopiperitenol] (-)-trans-isopiperitenol concentration ref
[NADPH] NADPH concentration ref
[NADP] NADP+ concentration ref

Strategies for estimating the kinetic parameter values

Calculating the Equilibrium Constant

The equilibrium constant can be calculated using the Van't Hoff Isotherm equation:



K_\mathrm{eq} = exp \left ( \cfrac {-ΔG^{°'}}{RT} \right )




 = exp \left (  \cfrac {-(XY \text { kJmol}^{-1})}{ (8.31 \text{ JK}^{-1} \text { mol}^{-1} * 289 K} \right )



 = exp \left (  \cfrac { XY \text { kJmol}^{-1} }{ 2401.59 \text{ JK}^{-1}\text { mol}^{-1} }\right)


= exp \left ( \cfrac{ XY \text { Jmol}^{-1}}{2401.59 \text{ JK}^{-1}\text { mol}^{-1}} \right)



=exp \left ( XY \right )


= (INSERT RESULT)


where;

Keq Equilibrium constant
-ΔG° Gibbs free energy change. For (INSERT ENZYME) it is (INSERT VALUE) kJmol-1
R Gas constant with a value of 8.31 JK-1mol-1
T Temperature which is always expressed in kelvin

Standard Gibbs Free energy

Standard Gibbs Free energy for (INSERT ENZYME) from MetaCyc (EC 4.2.3.16) is (INSERT VALUE) kcal/mol [1].

SI derived unit for Gibbs free energy is Joules per mol (J mol-1). 1 kJ·mol−1 is equal to 0.239 kcal·mol−1.

Therefore, the Gibbs free energy for (INSERT ENZYME) in kJ mol-1 is:

 

 \cfrac {1}{0.239 kcal.mol^-1} * (INSERT VALUE) kcal.mol^-1


= (INSERT RESULT) kJmol^-1

Extracting Information from (INSERT SUBSTRATE/PRODUCT) Production Rates

Amount produced (mg/L) Time (H) Organism Description Reaction Flux (µM/s)
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z

Published Kinetic Parameter Values

Km (mM) Vmax Kcat (s-1) Kcat/Km Organism Description
0.00125 - - - Z A -> B
0.0018 - - - Z A -> B
Y Y Y Y Z A -> B
Y Y Y Y Z A -> B
Y Y - - Z A -> B
Y - Y - Z GPP -> B
Y - Y - Z GPP -> B
x - y - Z. A -> B


Detailed description of kinetic values obtained from literature

A more detailed description of the values listed above can be found here .

Simulations

References