Difference between revisions of "Triosephosphate isomerase"

From ISMOC
Jump to: navigation, search
(Rate equation)
(Parameters with uncertainty)
Line 74: Line 74:
 
|
 
|
 
|}
 
|}
 +
 +
=== Equilibrium constant ===
 +
{|class="wikitable"
 +
! Equilibrium constant
 +
! Conditions
 +
! Source
 +
|-
 +
| 0.50
 +
| pH=7, T=25°C
 +
| Lehninger, (1975)<ref name="lehninger2008">David L. Nelson, Michael M. Cox (2008), Lehninger Principles of Biochemistry (5th edn), W. H. Freeman and Company</ref> p 553:<br/>
 +
<math>\Delta G' = 1.7\ kJ.mol^{-1}</math>, <math>Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{-1700}{8.31*298.15}) \approx 0.50</math>
 +
|-
 +
| 0.51
 +
| pH=7, T=25°C
 +
| Lehninger, (2008)<ref name="lehninger75">Lehninger, A.L. (1975) Biochemistry (2nd edn), Worth</ref> p 396: Keq(reverse)=1.97 => Keq(forward)=1/1.97=0.51.
 +
|-
 +
| 0.41
 +
| pH=7, T=25°C
 +
| Voet et al.<ref name="voet">Voet, D., Voet., J.G. and Pratt, C. W. (1999) Fundamentals of biochemistry, Wiley</ref> from Newshole et al. (1973) <ref name="newshole73">Newshole, E.A. and Stuart, C. (1973) Regulation in Metabolism, Wiley</ref>p 97:<br/>
 +
<math>\Delta G' = 2.2\ kJ.mol^{-1}</math>, <math>Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{-2200}{8.31*298.15}) \approx 0.41</math>
 +
|}
 +
 +
*Averaging these values gives <math>0.47 \pm 0.05</math>
  
 
==References==
 
==References==
 
<references/>
 
<references/>

Revision as of 14:35, 24 June 2014

This enzyme rapidly inter-converts the molecules Dihydroxyacetone phosphate (DHAP) and Glyceraldehyde 3-phosphate (Gly3P). Gly3P is removed as soon as it is formed to be used in the next step of glycolysis.

Chemical equation

 DHAP \rightleftharpoons  Gly3P

Rate equation

Reversible Michaelis-Menten is used [1]

 v = \frac{ V_{mf}\frac{[DHAP]}{K_{DHAP}} - V_{mr}\frac{[Gly3P]}{K_{Gly3P}}  }{1 + \frac{[DHAP]}{K_{DHAP}} + \frac{[Gly3P]}{K_{Gly3P}} }

Modified rate law considering thermodynamic constant is

 v = \frac{ V_{mf}\frac{[DHAP]}{K_{DHAP}}\left(1 - \frac{[Gly3P]}{K_{eq}[DHAP]} \right)}{1 + \frac{[DHAP]}{K_{DHAP}} + \frac{[Gly3P]}{K_{Gly3P}} }

Paramters

Parameter Value Units Organism Remarks
V_{mf} 5 [1]  mM \times min^{-1} Hela cell line
V_{mr} 42[2]  mM \times min^{-1}
Km_{Gly3P} 0.51[1] mM
Km_{DHAP} 1.6[1] mM

Parameters with uncertainty

  • The activity is measured in Activity in the reverse reaction in Hernandez (2006) et. al. V_{mf} is sampled based on Haldane equation K_{eq} = \frac{V_{forward}*K_{product}}{V_{reverse}*K_{substrate}} using the value Failed to parse (Cannot store math image on filesystem.): K_{eq} = 20.9 \pm 3.1 , Km_{Gly3P} and Km_{DHAP}. Alternatively the reported fixed point value can be considered with the standard deviation calculated based on the same ratio of V_{mf} which is \approx 31%. This gives the value Failed to parse (Cannot store math image on filesystem.): V_{mf}=5 \pm 1.55
Parameter Value Units Organism Remarks
V_{mf} Sampled based on the Haldane equation.
Alternative: Failed to parse (Cannot store math image on filesystem.): 5 \pm 1.55
 mM \times min^{-1}
V_{mr} 42 \pm 13 (3)[2]  mM \times min^{-1}
Km_{Gly3P} 0.40 \pm 0.03 (4)[3] mM Human liver
Km_{DHAP} 0.59 \pm 0.01 (4)[3] mM Human liver
K_{eq} Failed to parse (Cannot store math image on filesystem.): 20.9 \pm 3.1 (4) [3] mM

Equilibrium constant

Equilibrium constant Conditions Source
0.50 pH=7, T=25°C Lehninger, (1975)[4] p 553:

\Delta G' = 1.7\ kJ.mol^{-1}, Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{-1700}{8.31*298.15}) \approx 0.50

0.51 pH=7, T=25°C Lehninger, (2008)[5] p 396: Keq(reverse)=1.97 => Keq(forward)=1/1.97=0.51.
0.41 pH=7, T=25°C Voet et al.[6] from Newshole et al. (1973) [7]p 97:

\Delta G' = 2.2\ kJ.mol^{-1}, Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{-2200}{8.31*298.15}) \approx 0.41

  • Averaging these values gives 0.47 \pm 0.05

References

  1. 1.0 1.1 1.2 1.3 Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767 (doi) Cite error: Invalid <ref> tag; name "Hernandez2011" defined multiple times with different content
  2. 2.0 2.1 Marín-Hernández A , Rodríguez-Enríquez S, Vital-González P A, et al. (2006). Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J., 273 , pp. 1975–1988(doi)
  3. 3.0 3.1 3.2 Snyder, R.; Lee, E.W. (1975), Triosephosphate isomerase from human and horse liver,Methods Enzymol. 41B, 430-434
  4. David L. Nelson, Michael M. Cox (2008), Lehninger Principles of Biochemistry (5th edn), W. H. Freeman and Company
  5. Lehninger, A.L. (1975) Biochemistry (2nd edn), Worth
  6. Voet, D., Voet., J.G. and Pratt, C. W. (1999) Fundamentals of biochemistry, Wiley
  7. Newshole, E.A. and Stuart, C. (1973) Regulation in Metabolism, Wiley