Difference between revisions of "Lactate dehydrogenase"

From ISMOC
Jump to: navigation, search
Line 8: Line 8:
 
==Rate equation==
 
==Rate equation==
 
RAndom Bi-Bi reversible Michaelis-Menten equation is used. <ref name="Hernandez2011"> Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767 ([http://dx.doi.org/10.1016/j.bbabio.2010.11.006 doi])  </ref>
 
RAndom Bi-Bi reversible Michaelis-Menten equation is used. <ref name="Hernandez2011"> Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767 ([http://dx.doi.org/10.1016/j.bbabio.2010.11.006 doi])  </ref>
 +
 
<center><math> \frac{V_{mf}\frac{[NADH][PYR]}{Km_{NADH} K_{PYR}} - V_{mr}\frac{[Lactate_{in}][NAD]}{Km_{Lactate_{in}} K_{NAD}}}{1 + \frac{[NADH]}{Km_{NADH}} + \frac{[PYR]}{Km_{PYR}} + \frac{[NADH][PYR]}{Km_{NADH} Km_{PYR}} + \frac{[Lactate_{in}][NAD]}{Km_{Lactate_{in}} Km_{NAD}} + \frac{[Lactate_{in}]}{Km_{Lactate_{in}}} + \frac{[PYR]}{Km_{PYR}} } </math></center>
 
<center><math> \frac{V_{mf}\frac{[NADH][PYR]}{Km_{NADH} K_{PYR}} - V_{mr}\frac{[Lactate_{in}][NAD]}{Km_{Lactate_{in}} K_{NAD}}}{1 + \frac{[NADH]}{Km_{NADH}} + \frac{[PYR]}{Km_{PYR}} + \frac{[NADH][PYR]}{Km_{NADH} Km_{PYR}} + \frac{[Lactate_{in}][NAD]}{Km_{Lactate_{in}} Km_{NAD}} + \frac{[Lactate_{in}]}{Km_{Lactate_{in}}} + \frac{[PYR]}{Km_{PYR}} } </math></center>
 +
 +
Modified rate law to take Thermodynamic constraint into consideration
 +
<center><math> \frac{V_{mf}\frac{[NADH][PYR]}{Km_{NADH} K_{PYR}} \left(1 - \frac{[Lactate_{in}][NAD]}{K_{eq}[NADH][PYR]} \right)}{1 + \frac{[NADH]}{Km_{NADH}} + \frac{[PYR]}{Km_{PYR}} + \frac{[NADH][PYR]}{Km_{NADH} Km_{PYR}} + \frac{[Lactate_{in}][NAD]}{Km_{Lactate_{in}} Km_{NAD}} + \frac{[Lactate_{in}]}{Km_{Lactate_{in}}} + \frac{[PYR]}{Km_{PYR}} } </math></center>
  
 
==Prameter values==
 
==Prameter values==

Revision as of 11:31, 20 June 2014


A dehydrogenase is an enzyme that transfers a hydride from one molecule to another. Lactate dehydrogenase catalyzes the conversion of pyruvate to lactate and back, as it converts NADH to NAD+ and back.

Chemical reactions

NADH + PYR \rightleftharpoons Lactate_{in} + NAD^+

Rate equation

RAndom Bi-Bi reversible Michaelis-Menten equation is used. [1]

 \frac{V_{mf}\frac{[NADH][PYR]}{Km_{NADH} K_{PYR}} - V_{mr}\frac{[Lactate_{in}][NAD]}{Km_{Lactate_{in}} K_{NAD}}}{1 + \frac{[NADH]}{Km_{NADH}} + \frac{[PYR]}{Km_{PYR}} + \frac{[NADH][PYR]}{Km_{NADH} Km_{PYR}} + \frac{[Lactate_{in}][NAD]}{Km_{Lactate_{in}} Km_{NAD}} + \frac{[Lactate_{in}]}{Km_{Lactate_{in}}} + \frac{[PYR]}{Km_{PYR}} }

Modified rate law to take Thermodynamic constraint into consideration

 \frac{V_{mf}\frac{[NADH][PYR]}{Km_{NADH} K_{PYR}} \left(1 - \frac{[Lactate_{in}][NAD]}{K_{eq}[NADH][PYR]} \right)}{1 + \frac{[NADH]}{Km_{NADH}} + \frac{[PYR]}{Km_{PYR}} + \frac{[NADH][PYR]}{Km_{NADH} Km_{PYR}} + \frac{[Lactate_{in}][NAD]}{Km_{Lactate_{in}} Km_{NAD}} + \frac{[Lactate_{in}]}{Km_{Lactate_{in}}} + \frac{[PYR]}{Km_{PYR}} }

Prameter values

Parameter Value Units Organism Remarks
V_{mf} 3.4 [1]  \text{mM min}^{-1} HeLa cell line
V_{mr} 0.54  \text{mM min}^{-1} HeLa cell line
Km_{PYR} 0.1 mM HeLa cell line
Km_{LAC} 4.7 mM Rat AS-30D hepatoma
Km_{NAD} 0.07 mM HeLa cell line
Km_{NADH} 0.002 mM HeLa cell line

Parameters with uncertainty

  • Mean and Std. Dev. for V_{mf} has been reported in Table S3 for Marín-Hernández (2011) et. al. [1]. The Std. Dev. for V_{mr} is calculated based on the same ratio for V_{mf}.
  • Reported values of Km_{PYR} are 0.03 [2], 0.398 [3], 0.3 [1]. The mean value with std. dev. is 0.24 \pm 0.19.
  • The value for Km_{NAD} and Km_{NADH} has been reported for Ovine (Sheep) as Km_{NAD} = 3.96 \pm 0.17 and Km_{NADH} = 0.097 \pm 0.020 [4]. Due to lack of data in Human cells these two values are considered in our model.
  • Km_{LAC} = 4 for LDH-1 and 2 isoforms and Km_{LAC} = 7 for LDH-4 and 5 isoforms are being reported in Marín-Hernández et. al. (2009)[5]. Mean and Std. Dev. from these two values are 5.5 \pm 2.12
Parameter Value Units Organism Remarks
V_{mf} Failed to parse (Cannot store math image on filesystem.): 3.4 \pm 0.5 (3) [6]  \text{mM min}^{-1} HeLa cell line
V_{mr}  0.54 \pm 0.073  \text{mM min}^{-1} HeLa cell line
Km_{PYR} 0.24 \pm 0.19 mM HeLa cell line
Km_{LAC} 5.5 \pm 2.12 mM Rat AS-30D hepatoma
Km_{NAD} 3.96 \pm 0.17 mM Ovine (Sheep)
Km_{NADH} 0.097 \pm 0.020 mM Ovine (Sheep)

References

  1. 1.0 1.1 1.2 1.3 Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767 (doi)
  2. LeVan K.M., Goldberg E. (1991), Properties of human testis-specific lactate dehydrogenase expressed from Escherichia coli, Biochem. J. 273, 587-592 (1991)
  3. Pettit S.M., Nealon D.A., Henderson A.R. (1981), Purification of lactate dehydrogenase isoenzyme-5 from human liver, Clin. Chem. 27, 88-93 (1981)
  4. M. Doughty (1998), Some kinetic properties of lactate dehydrogenase activity in cell extracts from a mammalian (ovine) corneal epithelium, Exp. Eye Res., 66, pp. 231–239
  5. A. Marín-Hernández, J.C. Gallardo-Pérez, S.J. Ralph, S. Rodríguez-Enríquez, R. Moreno-Sánchez (2009), HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms, Mini Rev. Med. Chem., 9, pp. 1084–1101
  6. Marín-Hernández A , Rodríguez-Enríquez S, Vital-González P A, et al. (2006). Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J., 273 , pp. 1975–1988(doi)