Difference between revisions of "Kinetic Model of Monoterpenoid Biosynthesis Wiki"

From ISMOC
Jump to: navigation, search
Line 16: Line 16:
  
 
== Strategies for Estimating Kinetic Parameter Values ==
 
== Strategies for Estimating Kinetic Parameter Values ==
 +
 +
=== Calculating the Equilibrium Constant (K<sub>eq</sub>) ===
 +
 +
Using the Haldane relationship, the equilibrium constant (K<sub>eq</sub>) can be written as:
 +
 +
:<math>
 +
K_\mathrm{eq} =  \frac{Vmax_\mathrm{forward} * Km_\mathrm{product} }{Vmax_\mathrm{reverse} * Km_\mathrm{substrate}}
 +
</math>
 +
 +
Instead of using the ratio of the V<sub>max</sub> values, the reversible Michaelis-Menten rate equation were rewritten to contain the equilibrium constant.
  
 
== Equilibrium Constant ==
 
== Equilibrium Constant ==
  
 
== References ==
 
== References ==

Revision as of 12:20, 19 February 2016

This wiki page describes the construction and simulation of a kinetic model of Monoterpenoid Biosynthesis.

Monoterpenoid Biosynthesis

Description of the model

Limonene Synthase

Limonene-6-Hydroxylase

Reversible Michaelis-Menten equation

All reactions in this model are described using reversible Michaelis-Menten equation.

Strategies for Estimating Kinetic Parameter Values

Calculating the Equilibrium Constant (Keq)

Using the Haldane relationship, the equilibrium constant (Keq) can be written as:

Failed to parse (Cannot store math image on filesystem.): K_\mathrm{eq} = \frac{Vmax_\mathrm{forward} * Km_\mathrm{product} }{Vmax_\mathrm{reverse} * Km_\mathrm{substrate}}

Instead of using the ratio of the Vmax values, the reversible Michaelis-Menten rate equation were rewritten to contain the equilibrium constant.

Equilibrium Constant

References