Difference between revisions of "Enolase"

From ISMOC
Jump to: navigation, search
(Rate equation)
(Parameters with uncertainty)
Line 73: Line 73:
 
|mM
 
|mM
 
|Human muscle
 
|Human muscle
 +
|}
 +
 +
=== Equilibrium constant ===
 +
{|class="wikitable"
 +
! Equilibrium constant
 +
! Conditions
 +
! Source
 +
|-
 +
| 3.6
 +
| pH=7, T=25°C
 +
| Voet et al.<ref name="voet">Voet, D., Voet., J.G. and Pratt, C. W. (1999) Fundamentals of biochemistry, Wiley</ref> from Newshole et al. (1973) <ref name="newshole73">Newshole, E.A. and Stuart, C. (1973) Regulation in Metabolism, Wiley</ref>p 97:<br/>
 +
<math>\Delta G' = -3.2\ kJ.mol^{-1}</math>, <math>Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{3200}{8.31*298.15}) \approx 3.6</math>
 +
|-
 +
| 6.7
 +
| T=25°C
 +
| Bergmeyer ''Methods of enzymatic analysis'' page 449<ref name="bermeyer74">Bergmeyer H.U. (1974) ''Methods of enzymatic analysis'', Publisher: Verlag Chemie (vol 1)</ref>
 +
|-
 +
| 2.03
 +
| pH=7, T=297.15 K
 +
| From Meyerhof et al. (1947)<ref name="meyerhof49">Meyerhof O. and Oesper P. (1947) J. Biol. Chem. 170(1):1-22 [[http://www.jbc.org/content/170/1.toc J. Biol. Chem.]]</ref>:
 +
<math>\Delta G' = -1.757\ kJ.mol^{-1}</math>, <math>Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{1757}{8.31*298.15}) \approx 2.03</math>
 +
|-
 +
| 4.29
 +
| pH=7, T=298.15 K, c(MgSO4,mol dm-3) =0.001
 +
| From Wold et al. (1957) (NIST database<ref name="nist">Goldberg R.N., Tewari Y.B. and Bhat T.N. (2004) Bioinformatics 20(16):2874-2877 [[http://www.ncbi.nlm.nih.gov/pubmed?term=15145806 pmid: 15145806]]</ref> [[http://xpdb.nist.gov/enzyme_thermodynamics/enzyme_data1.pl?T1=57WOL/BAL_1173 57WOL/BAL_1173]])
 +
|-
 +
| 3.92
 +
| pH=7, T=298.15 K, c(MgSO4,mol dm-3) =0.01
 +
| From Wold et al. (1957) (NIST database<ref name="nist"></ref> [[http://xpdb.nist.gov/enzyme_thermodynamics/enzyme_data1.pl?T1=57WOL/BAL_1173 57WOL/BAL_1173]])
 
|}
 
|}
  
 
==References==
 
==References==
 
<references/>
 
<references/>

Revision as of 15:25, 24 June 2014

Enolase, also known as phosphopyruvate hydratase, catalysis the conversion of 2-phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP). This is the penultimate step of glycolysis.

Chemical equation

2PG \rightleftharpoons PEP

Rate equation

Mono-substrate reversible Michaelis-Menten equation is used. [1]

 \frac{V_{mf}\frac{[2PG]}{K_{2PG}}-V_{mr}\frac{[PEP]}{K_{PEP}}}{1 + \frac{[2PG]}{K_{2PG}} + \frac{[PEP]}{K_{PEP}}}

Modified rate law to take Thermodynamic constraint into consideration

 \frac{V_{mf}\frac{[2PG]}{K_{2PG}} \left( 1 -\frac{[PEP]}{K_{eq} [2PG]} \right)}{1 + \frac{[2PG]}{K_{2PG}} + \frac{[PEP]}{K_{PEP}}}

Parameter values

Parameter Value Units Organism Remarks
V_{mf} 0.34 [2]  \text{mM min}^{-1} HeLa cell line
V_{mr} 0.38[1]  \text{mM min}^{-1}
Km_{2PG} 0.038[1] mM
Km_{PEP} 0.06[1] mM

Parameters with uncertainty

  • Three values for Km_{2PG} is collected. The values are 0.20 [3], 0.199 [3], 0.038 [1]. The mean and std. dev. is 0.145 \pm 0.07
  • Similarly for Km_{PEP} three reported values are 0.58, 0.702, 0.06. The uncertainty is then 0.44 \pm 0.276.
  • In Pietkiewicz et. al. (2009) [3] V_{mr} is reported as 1.4 mmol/min^{-1} and Marín-Hernández et. al. (2011) [1] reported it to be 0.4. The mean and the std. dev. calculated from these two values are 0.9 \pm 0.5.
Parameter Value Units Organism Remarks
V_{mf} 0.36 \pm 0.15 (5) [2]  \text{mM min}^{-1} HeLa cell line
V_{mr} 0.9 \pm 0.5  \text{mM min}^{-1}
Km_{2PG} 0.145 \pm 0.07 mM Human muscle
Km_{PEP} 0.44 \pm 0.276 mM Human muscle

Equilibrium constant

Equilibrium constant Conditions Source
3.6 pH=7, T=25°C Voet et al.[4] from Newshole et al. (1973) [5]p 97:

\Delta G' = -3.2\ kJ.mol^{-1}, Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{3200}{8.31*298.15}) \approx 3.6

6.7 T=25°C Bergmeyer Methods of enzymatic analysis page 449[6]
2.03 pH=7, T=297.15 K From Meyerhof et al. (1947)[7]:

\Delta G' = -1.757\ kJ.mol^{-1}, Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{1757}{8.31*298.15}) \approx 2.03

4.29 pH=7, T=298.15 K, c(MgSO4,mol dm-3) =0.001 From Wold et al. (1957) (NIST database[8] [57WOL/BAL_1173])
3.92 pH=7, T=298.15 K, c(MgSO4,mol dm-3) =0.01 From Wold et al. (1957) (NIST database[8] [57WOL/BAL_1173])

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767 (doi)
  2. 2.0 2.1 Marín-Hernández A , Rodríguez-Enríquez S, Vital-González P A, et al. (2006). Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J., 273 , pp. 1975–1988(doi)
  3. 3.0 3.1 3.2 Pietkiewicz, J., Gamian, A., Staniszewska, M., & Danielewicz, R. (2009), Inhibition of human muscle-specific enolase by methylglyoxal and irreversible formation of advanced glycation end products, Journal of Enzyme Inhibition and Medicinal Chemistry, 24, 356–364
  4. Voet, D., Voet., J.G. and Pratt, C. W. (1999) Fundamentals of biochemistry, Wiley
  5. Newshole, E.A. and Stuart, C. (1973) Regulation in Metabolism, Wiley
  6. Bergmeyer H.U. (1974) Methods of enzymatic analysis, Publisher: Verlag Chemie (vol 1)
  7. Meyerhof O. and Oesper P. (1947) J. Biol. Chem. 170(1):1-22 [J. Biol. Chem.]
  8. 8.0 8.1 Goldberg R.N., Tewari Y.B. and Bhat T.N. (2004) Bioinformatics 20(16):2874-2877 [pmid: 15145806]