Difference between revisions of "Enolase"

From ISMOC
Jump to: navigation, search
(Rate equation)
Line 8: Line 8:
 
Mono-substrate reversible Michaelis-Menten equation is used. <ref name="Hernandez2011"> Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767 ([http://dx.doi.org/10.1016/j.bbabio.2010.11.006 doi])  </ref>
 
Mono-substrate reversible Michaelis-Menten equation is used. <ref name="Hernandez2011"> Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767 ([http://dx.doi.org/10.1016/j.bbabio.2010.11.006 doi])  </ref>
 
<center><math> \frac{V_{mf}\frac{[2PG]}{K_{2PG}}-V_{mr}\frac{[PEP]}{K_{PEP}}}{1 + \frac{[2PG]}{K_{2PG}} + \frac{[PEP]}{K_{PEP}}}  </math></center>
 
<center><math> \frac{V_{mf}\frac{[2PG]}{K_{2PG}}-V_{mr}\frac{[PEP]}{K_{PEP}}}{1 + \frac{[2PG]}{K_{2PG}} + \frac{[PEP]}{K_{PEP}}}  </math></center>
 +
 +
Modified rate law to take Thermodynamic constraint into consideration
 +
 +
<center><math> \frac{V_{mf}\frac{[2PG]}{K_{2PG}} \left( 1 -\frac{[PEP]}{K_{eq} [2PG]} \right)}{1 + \frac{[2PG]}{K_{2PG}} + \frac{[PEP]}{K_{PEP}}}  </math></center>
  
 
==Parameter values==
 
==Parameter values==

Revision as of 10:52, 20 June 2014

Enolase, also known as phosphopyruvate hydratase, catalysis the conversion of 2-phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP). This is the penultimate step of glycolysis.

Chemical equation

2PG \rightleftharpoons PEP

Rate equation

Mono-substrate reversible Michaelis-Menten equation is used. [1]

 \frac{V_{mf}\frac{[2PG]}{K_{2PG}}-V_{mr}\frac{[PEP]}{K_{PEP}}}{1 + \frac{[2PG]}{K_{2PG}} + \frac{[PEP]}{K_{PEP}}}

Modified rate law to take Thermodynamic constraint into consideration

 \frac{V_{mf}\frac{[2PG]}{K_{2PG}} \left( 1 -\frac{[PEP]}{K_{eq} [2PG]} \right)}{1 + \frac{[2PG]}{K_{2PG}} + \frac{[PEP]}{K_{PEP}}}

Parameter values

Parameter Value Units Organism Remarks
V_{mf} 0.34 [2]  \text{mM min}^{-1} HeLa cell line
V_{mr} 0.38[1]  \text{mM min}^{-1}
Km_{2PG} 0.038[1] mM
Km_{PEP} 0.06[1] mM

Parameters with uncertainty

  • Three values for Km_{2PG} is collected. The values are 0.20 [3], 0.199 [3], 0.038 [1]. The mean and std. dev. is 0.145 \pm 0.07
  • Similarly for Km_{PEP} three reported values are 0.58, 0.702, 0.06. The uncertainty is then 0.44 \pm 0.276.
  • In Pietkiewicz et. al. (2009) [3] V_{mr} is reported as 1.4 mmol/min^{-1} and Marín-Hernández et. al. (2011) [1] reported it to be 0.4. The mean and the std. dev. calculated from these two values are 0.9 \pm 0.5.
Parameter Value Units Organism Remarks
V_{mf} 0.36 \pm 0.15 (5) [2]  \text{mM min}^{-1} HeLa cell line
V_{mr} 0.9 \pm 0.5  \text{mM min}^{-1}
Km_{2PG} 0.145 \pm 0.07 mM Human muscle
Km_{PEP} 0.44 \pm 0.276 mM Human muscle

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767 (doi)
  2. 2.0 2.1 Marín-Hernández A , Rodríguez-Enríquez S, Vital-González P A, et al. (2006). Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J., 273 , pp. 1975–1988(doi)
  3. 3.0 3.1 3.2 Pietkiewicz, J., Gamian, A., Staniszewska, M., & Danielewicz, R. (2009), Inhibition of human muscle-specific enolase by methylglyoxal and irreversible formation of advanced glycation end products, Journal of Enzyme Inhibition and Medicinal Chemistry, 24, 356–364