Degradation Pathways

From ISMOC
Revision as of 15:11, 5 September 2016 by Muttley93 (talk | contribs)
Jump to: navigation, search

Return to overview

Upon being transported out of the cell, the eicosanoids accumulate in the interstitial fluid, which for simplicity is referred to as the extracellular compartment in the model. A decay constant was included for each extracellular metabolite to represent degradation. To describe the breaking down of metabolites an irreversible mass action rate law was used for reactions 43-64. The half life of each eicosanoid was initially assumed as 24 hours, but will be made metabolite specific when all of the values have been collected.

Degradation Pathways
Reaction # Species Half Life Rate constant Notes Reference
44 exPGF2a 8.8 +/- 3.4 h Study performed in decidual stromal cells and macrophages in culture. [1]
45 exTXB2 20 - 30 minutes Quoted in a textbook(https://books.google.co.uk/books?id=_9kEeTjyJdMC&pg=PA864&lpg=PA864&dq=half+life+txa2&source=bl&ots=2OTF4Mh2Jk&sig=hu79GprliUcW4QE_Zm79islesOA&hl=en&sa=X&ved=0ahUKEwj0oo2sgfjOAhXLIcAKHcaPDHQQ6AEIRjAI#v=onepage&q=half%20life%20txa2&f=false) with no ref.
46 exTXA2 20 - 30 seconds Quoted in a textbook(https://books.google.co.uk/books?id=_9kEeTjyJdMC&pg=PA864&lpg=PA864&dq=half+life+txa2&source=bl&ots=2OTF4Mh2Jk&sig=hu79GprliUcW4QE_Zm79islesOA&hl=en&sa=X&ved=0ahUKEwj0oo2sgfjOAhXLIcAKHcaPDHQQ6AEIRjAI#v=onepage&q=half%20life%20txa2&f=false) with no ref.
47 ex6-KETO-PGF2A 3 minutes Quoted in a textbook(https://books.google.co.uk/books?id=_9kEeTjyJdMC&pg=PA864&lpg=PA864&dq=half+life+txa2&source=bl&ots=2OTF4Mh2Jk&sig=hu79GprliUcW4QE_Zm79islesOA&hl=en&sa=X&ved=0ahUKEwj0oo2sgfjOAhXLIcAKHcaPDHQQ6AEIRjAI#v=onepage&q=half%20life%20txa2&f=false) with no ref.
48 exPGI2 42 seconds [2]
49 exPGE2 15.0 +/- 8.2 h Study performed in decidual stromal cells and macrophages in culture. [1]
50 ex15-DEOXY-PGJ2 12 hours Dehydration of PGD2 to ultimatley 15d-PGJ2 occurs with a half life of about 12 hours in the presense of albumin (protien found in blood). [3]
51 exPGJ2
52 exPGD2 1.5 -1.6 minutes Human brain [4]
53 exPGH2 5 minutes Quoted on supplier page (http://www.enzolifesciences.com/BML-PH002/prostaglandin-h2/)
54 ex5-OXO-ETE 11 min 0.0643 min-1 Study in R15L Cells [5]
55 ex5-HETE
56 exLTB4 0.47 +/- 0.02 to 0.63 +/- 0.04 minutes Rabbit, Immunoreactive LTB4 [6]
57 exLTC4
58 exLTA4 3 seconds 37 degrees C [7]
59 ex5-HPETE
60 ex15-HETE 21 min 0.0331 min-1 Study in R15L Cells [5]
61 ex15-HPETE
62 ex12-HETE 3 hours "During the first 2 min., the half-life of 12-HETE was 0.9 s, which implies

a fast clearance of the compound from the circulation. However, during the subsequent half-hour the estimated half-life was 3 min. and increased dramatically at the interval of time from 30 to 60 min. (t1/2 around 3 h)."

[8]
63 ex12-HPETE 30 seconds [9]
64 exAA Between 4 and 11 h [10]


References

  1. 1.0 1.1 O. Ishihara, "Differences of metabolism of prostaglandin E2 and F2 alpha by decidual stromal cells and macrophages in culture." Eicosanoids. 1991;4(4):203-7.
  2. Cawello W., "Metabolism and pharmacokinetics of prostaglandin E1 administered by intravenous infusion in human subjects." Eur J Clin Pharmacol. 1994;46(3):275-7.
  3. F. Fitzpatrick, "Albumin-catalyzed metabolism of prostaglandin D2. Identification of products formed in vitro." J Biol Chem. 1983 Oct 10;258(19):11713-8.
  4. Suzuki F., "Transport of prostaglandin D2 into brain." Brain Res. 1986 Oct 22;385(2):321-8.
  5. 5.0 5.1 Cong W., "15-oxo-Eicosatetraenoic Acid, a Metabolite of Macrophage 15-Hydroxyprostaglandin Dehydrogenase That Inhibits Endothelial Cell Proliferation" Mol Pharmacol. 2009 Sep; 76(3): 516–525.
  6. Marleau S., "Metabolic disposition of leukotriene B4 (LTB4) and oxidation-resistant analogues of LTB4 in conscious rabbits." Br J Pharmacol. 1994 Jun;112(2):654-8.
  7. Zimmer J., "Fatty acid binding proteins stabilize leukotriene A4 competition with arachidonic acid but not other lipoxygenase products" November 2004 The Journal of Lipid Research, 45, 2138-2144.
  8. Dadaian M., "12-hydroxyeicosatetraenoic acid is a long-lived substance in the rabbit circulation." Prostaglandins Other Lipid Mediat. 1998 Jan;55(1):3-25.
  9. J. Maclouf, "Stimulation of leukotriene biosynthesis in human blood leukocytes by platelet-derived 12-hydroperoxy-icosatetraenoic acid" (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 6042-6046
  10. Vinge E., "Arachidonic acid-induced platelet aggregation and prostanoid formation in whole blood in relation to plasma concentration of indomethacin." Eur J Clin Pharmacol. 1985;28(2):163-9.