Difference between revisions of "DXR"

From ISMOC
Jump to: navigation, search
(Modelling DXR)
Line 8: Line 8:
 
== Modelling DXR ==
 
== Modelling DXR ==
  
DXR is modelled reversible with the Michaelis-Menten rate law using Hanekom's generic random order bi-bi equation <ref name="Hanekom2006"> </ref>. There are a total of five kinetic parameters (2 forward Kms, 2 reverse Kms and 1 Kcat), and one thermodynamic parameter (Equilibrium constant , Keq).
+
DXR is modelled reversible with the Michaelis-Menten rate law using Hanekom's generic random order bi-bi equation ref name="Hanekom2016"> [http://scholar.sun.ac.za/ Hanekom, A. J. 2006.] "Generic kinetic equations for modelling multisubstrate reactions in computational systems biology", MSc Thesis submitted at the University of Stellenbosch</ref>. There are a total of five kinetic parameters (2 forward Kms, 2 reverse Kms and 1 Kcat), and one thermodynamic parameter (Equilibrium constant , Keq).
  
 
<math>
 
<math>
Line 15: Line 15:
  
 
</math>
 
</math>
 
  
 
== References ==
 
== References ==
  
 
<references/>
 
<references/>

Revision as of 16:18, 23 March 2017

You can go back to main page of the kinetic model here.


DXR reaction

The 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR, EC 1.1.1.267) is the second step in the MEP pathway that catalyses the production of 2-C-methyl-D-erythritol 4-phosphate (MEP) from 1-deoxy-D-xylulose 5-phosphate (DXP).

Modelling DXR

DXR is modelled reversible with the Michaelis-Menten rate law using Hanekom's generic random order bi-bi equation ref name="Hanekom2016"> Hanekom, A. J. 2006. "Generic kinetic equations for modelling multisubstrate reactions in computational systems biology", MSc Thesis submitted at the University of Stellenbosch</ref>. There are a total of five kinetic parameters (2 forward Kms, 2 reverse Kms and 1 Kcat), and one thermodynamic parameter (Equilibrium constant , Keq).



V_\mathrm{DXR}= \cfrac{Kcat_\mathrm{forward} \bullet [DXR] \bullet \left(\cfrac{[DXP]}{Km_\mathrm{dxp}}\right) \bullet \left( \cfrac{[NADPH]}{Km_\mathrm{nadph}} \right) \bullet \left( 1 - \cfrac{\cfrac{[DXP]\cdot[NADPH]}{[MEP]\cdot[NADP]}}{Keq}\right)}{\left(1 +\cfrac{[DXP]}{Km_\mathrm{dxp}} + \cfrac{[NADP]}{Km_\mathrm{nadp}}\right) \bullet \left( 1 + \cfrac{[NADPH]}{Km_\mathrm{nadph}} +  \cfrac{[MEP]}{Km_\mathrm{mep}}\right)}

References