3-phosphoglycerate mutase

From ISMOC
Revision as of 16:12, 23 May 2014 by Galib36 (talk | contribs) (Parameters with uncertainty)
Jump to: navigation, search

Phosphoglycerate mutase (PGAM) is an enzyme that catalyzes the internal transfer of a phosphate group from C-3 to C-2 which results in the conversion of 3-phosphoglycerate (3PG) to 2-phosphoglycerate (2PG).

Chemical equation

3PG \rightleftharpoons 2PG

Rate equation

Mono-substrate reversible Michaelis-Menten equation is used. [1]

 \frac{V_{mf}\frac{[3PG]}{Km_{3PG}}-V_{mr}\frac{[2PG]}{Km_{2PG}}}{1 + \frac{[3PG]}{Km_{3PG}} + \frac{[2PG]}{Km_{2PG}}}

Parameter values

Parameter Value Units Organism Remarks
V_{mf} 0.94 [2]  \text{mM min}^{-1} HeLa cell line
V_{mr} 0.36 [2]  \text{mM min}^{-1}
Km_{3PG} 0.19[1] mM
Km_{2PG} 0.12[1] mM

Parameters with uncertainty

  • Three reported values of Km_{3PG} are considered. 0.19 [1], 0.5[3] and 0.4[4].
  • Two values of Km_{3PG} are found for Human cells. They are reported as 0.28[3] and 0.12[1]. Averaging them gives mean value of 0.2 and 0.08
  • As the value of the K_{eq} does not depend on the organism, the mean and std. dev. of the distribution can be calculated from the various values reported in the literature. [5]
  • V_{mr} can be sampled based on Haldane equation
    K_{eq} = \frac{V_{forward}*K_{product}}{V_{reverse}*K_{substrate}} or Alternatively,
Parameter Value Units Organism Remarks
V_{mf} 1.4 \pm 1 [2]  \text{mM min}^{-1} HeLa cell line
V_{mr} Sampled based on Haldane equation
K_{eq} = \frac{V_{forward}*K_{product}}{V_{reverse}*K_{substrate}}
 \text{mM min}^{-1}
Km_{3PG} 0.36 \pm 0.12 mM Multiple tissue of Human cell
Km_{2PG} 0.2 \pm 0.08 mM Multiple tissue of Human cell


Equilibrium constant

Equilibrium constant Conditions Source
0.15 pH=7, T=25°C Voet et al.[6] from Newshole et al. (1973) [7]p 97:

\Delta G' = 4.7\ kJ.mol^{-1}, Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{-4700}{8.31*298.15}) \approx 0.15

0.17 pH=7, T=25°C Lehninger, (1975)[8] p 412:

\Delta G' = 4.4\ kJ.mol^{-1}, Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{-4400}{8.31*298.15}) \approx 0.17

0.167 pH=7, T=297.15 K From Meyerhof et al. 1949 (NIST database[9] [49MEY/OES_1388])
0.19 pH=7.2, T=25°C From Chiba et al. 1959 (NIST database[9] [59CHI/SUG_1391])
0.20 pH=6, T=25°C From Grisolia et al. 1975 (NIST database[9] [75GRI/CAR_1396])

Averaging all those values gives K_{eq} = 0.17 \pm 0.019

References

  1. 1.0 1.1 1.2 1.3 1.4 Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767 (doi)
  2. 2.0 2.1 2.2 Marín-Hernández A , Rodríguez-Enríquez S, Vital-González P A, et al. (2006). Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J., 273 , pp. 1975–1988(doi)
  3. 3.0 3.1 Marin-Hernandez, A., Gallardo-Perez, J. C., Ralph, S. J., Rodriguez-Enriquez, S. & Moreno-Sanchez, R. (2009), HIF-1α modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini-Rev. Med. Chem. 9, 1084–1101
  4. de Atauri, P.; Repiso, A.; Oliva, B.; Vives-Corrons, J.L.; Climent, F.; Carreras, J. (2005), Characterization of the first described mutation of human red blood cell phosphoglycerate mutase, Biochim. Biophys. Acta 1740, 403-410
  5. Achcar, F., Kerkhoven, E. J., Bakker, B. M., Barrett, M. P., Breitling, R. (2012), Dynamic modelling under uncertainty: the case of Trypanosoma brucei energy metabolism, PLoS Comput. Biol. 8, e1002352.
  6. Voet, D., Voet., J.G. and Pratt, C. W. (1999) Fundamentals of biochemistry, Wiley
  7. Newshole, E.A. and Stuart, C. (1973) Regulation in Metabolism, Wiley
  8. Lehninger, A.L. (1975) Biochemistry (2nd edn), Worth
  9. 9.0 9.1 9.2 Goldberg R.N., Tewari Y.B. and Bhat T.N. (2004) Bioinformatics 20(16):2874-2877 [pmid: 15145806]