Difference between revisions of "3-phosphoglycerate mutase"

From ISMOC
Jump to: navigation, search
(Parameters with uncertainty)
Line 18: Line 18:
 
|-
 
|-
 
|<math>V_{mf}</math>
 
|<math>V_{mf}</math>
|0.94 <ref name="Hernandez_2006"> Marín-Hernández A , Rodríguez-Enríquez S, Vital-González P A, ''et al.'' (2006). ''Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase''. FEBS J., 273 , pp. 1975–1988([http://dx.doi.org/doi:10.1111/j.1742-4658.2006.05214.x doi]) </ref>
+
|0.94 <ref name="Hernandez2011"></ref>
 
| <math> \text{mM min}^{-1} </math>
 
| <math> \text{mM min}^{-1} </math>
 
|rowspan="4"|HeLa cell line
 
|rowspan="4"|HeLa cell line
Line 24: Line 24:
 
|-
 
|-
 
|<math>V_{mr}</math>
 
|<math>V_{mr}</math>
|0.36 <ref name="Hernandez_2006"></ref>
+
|0.36 <ref name="Hernandez2011"></ref>
 
|<math> \text{mM min}^{-1} </math>
 
|<math> \text{mM min}^{-1} </math>
 
|-
 
|-
Line 42: Line 42:
  
 
* As the value of the <math>K_{eq}</math> does not depend on the organism, the mean and std. dev. of the distribution can be calculated from the various values reported in the literature. <ref name="Achcar_2012">Achcar, F., Kerkhoven, E. J., Bakker, B. M., Barrett, M. P., Breitling, R. (2012), ''Dynamic modelling under uncertainty: the case of Trypanosoma brucei energy metabolism'', PLoS Comput. Biol. 8, e1002352.</ref>
 
* As the value of the <math>K_{eq}</math> does not depend on the organism, the mean and std. dev. of the distribution can be calculated from the various values reported in the literature. <ref name="Achcar_2012">Achcar, F., Kerkhoven, E. J., Bakker, B. M., Barrett, M. P., Breitling, R. (2012), ''Dynamic modelling under uncertainty: the case of Trypanosoma brucei energy metabolism'', PLoS Comput. Biol. 8, e1002352.</ref>
*<math>V_{mr}</math> can be sampled based on Haldane equation <br> <math>K_{eq} = \frac{V_{forward}*K_{product}}{V_{reverse}*K_{substrate}}</math> or '''Alternatively''',  
+
*<math>V_{mr}</math> can be sampled based on Haldane equation <br> <math>K_{eq} = \frac{V_{forward}*K_{product}}{V_{reverse}*K_{substrate}}</math> or '''Alternatively''', same percentage of error mentioned for <math>V_{mf}</math> considering the value for <math>V_{mf}</math> reported in the model file of Hernandez (2011)<ref name="Hernandez2011"></ref>. This gives the value of <math>V_{mr} = 0.36 \pm 0.25</math>
  
 
{|class="wikitable"
 
{|class="wikitable"

Revision as of 16:18, 23 May 2014

Phosphoglycerate mutase (PGAM) is an enzyme that catalyzes the internal transfer of a phosphate group from C-3 to C-2 which results in the conversion of 3-phosphoglycerate (3PG) to 2-phosphoglycerate (2PG).

Chemical equation

3PG \rightleftharpoons 2PG

Rate equation

Mono-substrate reversible Michaelis-Menten equation is used. [1]

 \frac{V_{mf}\frac{[3PG]}{Km_{3PG}}-V_{mr}\frac{[2PG]}{Km_{2PG}}}{1 + \frac{[3PG]}{Km_{3PG}} + \frac{[2PG]}{Km_{2PG}}}

Parameter values

Parameter Value Units Organism Remarks
V_{mf} 0.94 [1]  \text{mM min}^{-1} HeLa cell line
V_{mr} 0.36 [1]  \text{mM min}^{-1}
Km_{3PG} 0.19[1] mM
Km_{2PG} 0.12[1] mM

Parameters with uncertainty

  • Three reported values of Km_{3PG} are considered. 0.19 [1], 0.5[2] and 0.4[3].
  • Two values of Km_{3PG} are found for Human cells. They are reported as 0.28[2] and 0.12[1]. Averaging them gives mean value of 0.2 and 0.08
  • As the value of the K_{eq} does not depend on the organism, the mean and std. dev. of the distribution can be calculated from the various values reported in the literature. [4]
  • V_{mr} can be sampled based on Haldane equation
    K_{eq} = \frac{V_{forward}*K_{product}}{V_{reverse}*K_{substrate}} or Alternatively, same percentage of error mentioned for V_{mf} considering the value for V_{mf} reported in the model file of Hernandez (2011)[1]. This gives the value of V_{mr} = 0.36 \pm 0.25
Parameter Value Units Organism Remarks
V_{mf} 1.4 \pm 1 [5]  \text{mM min}^{-1} HeLa cell line
V_{mr} Sampled based on Haldane equation
K_{eq} = \frac{V_{forward}*K_{product}}{V_{reverse}*K_{substrate}}
 \text{mM min}^{-1}
Km_{3PG} 0.36 \pm 0.12 mM Multiple tissue of Human cell
Km_{2PG} 0.2 \pm 0.08 mM Multiple tissue of Human cell


Equilibrium constant

Equilibrium constant Conditions Source
0.15 pH=7, T=25°C Voet et al.[6] from Newshole et al. (1973) [7]p 97:

\Delta G' = 4.7\ kJ.mol^{-1}, Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{-4700}{8.31*298.15}) \approx 0.15

0.17 pH=7, T=25°C Lehninger, (1975)[8] p 412:

\Delta G' = 4.4\ kJ.mol^{-1}, Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{-4400}{8.31*298.15}) \approx 0.17

0.167 pH=7, T=297.15 K From Meyerhof et al. 1949 (NIST database[9] [49MEY/OES_1388])
0.19 pH=7.2, T=25°C From Chiba et al. 1959 (NIST database[9] [59CHI/SUG_1391])
0.20 pH=6, T=25°C From Grisolia et al. 1975 (NIST database[9] [75GRI/CAR_1396])

Averaging all those values gives K_{eq} = 0.17 \pm 0.019

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767 (doi)
  2. 2.0 2.1 Marin-Hernandez, A., Gallardo-Perez, J. C., Ralph, S. J., Rodriguez-Enriquez, S. & Moreno-Sanchez, R. (2009), HIF-1α modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini-Rev. Med. Chem. 9, 1084–1101
  3. de Atauri, P.; Repiso, A.; Oliva, B.; Vives-Corrons, J.L.; Climent, F.; Carreras, J. (2005), Characterization of the first described mutation of human red blood cell phosphoglycerate mutase, Biochim. Biophys. Acta 1740, 403-410
  4. Achcar, F., Kerkhoven, E. J., Bakker, B. M., Barrett, M. P., Breitling, R. (2012), Dynamic modelling under uncertainty: the case of Trypanosoma brucei energy metabolism, PLoS Comput. Biol. 8, e1002352.
  5. Marín-Hernández A , Rodríguez-Enríquez S, Vital-González P A, et al. (2006). Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J., 273 , pp. 1975–1988(doi)
  6. Voet, D., Voet., J.G. and Pratt, C. W. (1999) Fundamentals of biochemistry, Wiley
  7. Newshole, E.A. and Stuart, C. (1973) Regulation in Metabolism, Wiley
  8. Lehninger, A.L. (1975) Biochemistry (2nd edn), Worth
  9. 9.0 9.1 9.2 Goldberg R.N., Tewari Y.B. and Bhat T.N. (2004) Bioinformatics 20(16):2874-2877 [pmid: 15145806]