3-phosphoglycerate kinase

From ISMOC
Revision as of 16:02, 23 May 2014 by Galib36 (talk | contribs) (Parameters with uncertainty)
Jump to: navigation, search

3-Phosphoglycerate kinase (PGK) is an enzyme that catalyzes the reversible transfer of a phosphate group from 1,3-bisphosphoglycerate (1,3-BPG) to ADP producing 3-phosphoglycerate (3-PG) and ATP. Like all kinases it is a transferase.

Chemical equation

 1,3BPG + ADP \rightleftharpoons 3PG + ATP


Rate equation

Random Bi-Bi reversible Michaelis-Menten euation for non-interacting substrates are used. [1]

 \frac{V_{mf}\frac{[1,3BPG][ADP]}{K_{1,3BPG} K_{ADP}} - V_{mr}\frac{[3PG][ATP]}{K_{3PG} K_{ATP}}}{1 + \frac{[1,3BPG]}{K_{1,3BPG}} + \frac{[ADP]}{K_{ADP}} + \frac{[1,3BPG][ADP]}{K_{1,3BPG} K_{ADP}} + \frac{[3PG][ATP]}{K_{3PG} K_{ATP}} + \frac{[3PG]}{K_{3PG}} + \frac{[ADP]}{K_{ADP}} }

Parameter values

Parameter Value Units Organism Remarks
V_{mf} 8.7 [2] mM \times min^{-1} HeLa cell line
V_{mr} 2.5[1] mM \times min^{-1}
Km_{1,3BPG} 0.079[1] mM
Km_{3PG} 0.13[1] mM
Km_{ADP} 0.04[1] mM
Km_{ATP} 0.27[1] mM

Parameters with uncertainty

  • As the value of the K_{eq} does not depend on the organism, the mean and std. dev. of the distribution can be calculated from the various values reported in the literature. [3]
    Alternative: Same percent of error reported for V_{mf} can be considered for V_{mr} while the mean value as reported in [2] can be considered. In that case the value would be 2.5 \pm 1.15
Parameter Value Units Organism Remarks
V_{mf} 13 ± 6[2] mM \times min^{-1} Human
V_{mr} Sampled based on Haldane relation or Alternative value mM \times min^{-1}
Km_{1,3BPG} 0.0005 \pm 0.0002[4] mM
Km_{3PG}[4] 0.05 \pm 0.02 mM
Km_{ADP} 0.12 \pm 0.02[4] mM
Km_{ATP} 0.11 \pm 0.02[4] mM

Equilibrium constant

Equilibrium constant Conditions Source
0.10 pH=7, T=25°C Voet et al.[5] from Newshole et al. (1973) [6]p 97:

\Delta G' = 22.8\ kJ.mol^{-1}, Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{-22800}{8.31*298.15}) \approx 0.10

0.067 pH=7, T=25°C Lehninger, (1975)[7] p 407:

\Delta G' = 23.8\ kJ.mol^{-1}, Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{-23800}{8.31*298.15}) \approx 0.067

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767 (doi)
  2. 2.0 2.1 2.2 Marín-Hernández A , Rodríguez-Enríquez S, Vital-González P A, et al. (2006). Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J., 273 , pp. 1975–1988(doi)
  3. Achcar, F., Kerkhoven, E. J., Bakker, B. M., Barrett, M. P., Breitling, R. (2012), Dynamic modelling under uncertainty: the case of Trypanosoma brucei energy metabolism, PLoS Comput. Biol. 8, e1002352.
  4. 4.0 4.1 4.2 4.3 Szabo, J.; Varga, A.; Flachner, B.; Konarev, P.V.; Svergun, D.I.; Zavodszky, P.; Vas, M. (2008), Role of side-chains in the operation of the main molecular hinge of 3-phosphoglycerate kinase, FEBS Lett. 582, 1335-1340
  5. Voet, D., Voet., J.G. and Pratt, C. W. (1999) Fundamentals of biochemistry, Wiley
  6. Newshole, E.A. and Stuart, C. (1973) Regulation in Metabolism, Wiley
  7. Lehninger, A.L. (1975) Biochemistry (2nd edn), Worth