UDPG-pyrophosphorylase

From ISMOC
Revision as of 12:06, 5 March 2014 by Galib36 (talk | contribs)
Jump to: navigation, search

This enzyme converts UTP and G1P to UDP-glucose (UDPG) and pyrophosphate (PPi)

Chemical equation

 UTP + Glc1P \rightarrow UDPG + PPi

Rate equation

Reversible Bi substrate Michaelis-Menten equation with random binding order is used [1]

 \frac{ \frac{V_{max}}{K_{UTP}K_{Glc1P}} \left( [UTP][Glc1P] - \frac{[UDPG][PPi]}{K_{eq}} \right)  }{ \left( 1 + \frac{[UTP]}{K_{UTP}} + \frac{[PPi]}{K_{PPi}} \right) \left( 1 + \frac{[UDPG]}{K_{UDPG}} + \frac{[Glc1P]}{K_{Glc1P}} \right)  }

Parameter values

Parameter Value Organism Remarks
V_{max} 200 [2] HeLa cell line Recombinant, human muscle
K_{Glc1P} 0.4 [3] Recombinant, human muscle
K_{UTP} 0.92 [3] Recombinant, human muscle
K_{UDPG}  6.3 \times 10^{-2} [3] Recombinant, human muscle
K_{ppi} 0.38[3] Recombinant, human muscle
Keq 0.24 <ref name="bergamini_1983">Bergamini C, Signorini M, Ferrari C & Dallocchio F (1983) Non-Michaelian kinetics of rabbit muscle uridine diphosphoglucose pyrophosphorylase. ArchBiochem Biophys 227, 397–405.


References

  1. Palm, D.C. (2013). The regulatory design of glycogen metabolism in mammalian skeletal muscle (Ph.D.). University of Stellenbosch
  2. Villar-Palasi C & Larner J (1960). Levels of activity of the enzymes of the glycogen cycle in rat tissues. Arch Biochem Biophys 86, 270–273.
  3. 3.0 3.1 3.2 3.3 Duggleby RG, Chao YC, Huang JG, Peng HL & Chang HY (1996). Sequence differences between human muscle and liver cDNAs for UDPglucose pyrophosphorylase and kinetic properties of the recombinant enzymes expressed in Escherichia coli. Eur J Biochem 235, 173–179.