Geranyl diphosphate synthase (GPPS)

From ISMOC
Revision as of 12:01, 24 March 2016 by Aliah.hawari (talk | contribs) (Metabolite Background Information)
Jump to: navigation, search

You can go back to main page of the kinetic model here.

Legend:

Have not started ·· 1 -2 data found ·· 3-4 data found ·· sufficient data found/estimated ·· data distribution generated ·· data sampled
to do DONE!

What we know

Issues

Strategies

Reaction catalysed



dimethylallyl diphosphate + isopentenyl diphosphate \rightleftharpoons geranyl diphosphate + diphosphate

DMAPP + IPP \rightleftharpoons GPP + PP

Metabolite and Enzyme Background Information

Long metabolite names are abbreviated in the model for clarity and standard identification purposes.

Metabolite Abbreviation Chemical Formula Molar mass (g/mol) ChEBI ChEMBL PubChem MetaCyc
dimethylallyl diphosphate DMAPP
isopentenyl diphosphate IPP
geranyl diphosphate GPP C10H20O7P2 314.209 17211 41432 445995
diphosphate PP O7P2 173.94 644102
geranyl diphosphate synthase GPPS CPLX-8656

Equation Rate

Failed to parse (Cannot store math image on filesystem.): V_\mathrm{GPPS} = Vmax_\mathrm{forward} * \cfrac { \left (\cfrac{[DMAPP]}{Km_\mathrm{DMAPP}} * \cfrac{[IPP]}{Km_\mathrm{IPP}}\right )* \left ( 1 - \cfrac {[GPP]*[PP]}{[GPP]*[PP]*K_\mathrm{eq}} \right )}{\left (1 + \cfrac {[IPP]}{Km_\mathrm{IPP}} + \cfrac {[PP]}{Km_\mathrm{PP}} \right ) * \left ( 1 + \cfrac {[DMAPP]}{Km_\mathrm{DMAPP}} + \cfrac {[GPP]}{Km_\mathrm{GPP}} \right )}


Parameter Description
VGPPS Reaction rate for Geranyl diphosphate synthase
Vmaxforward Maximum reaction rate towards the production of GPP
KmGPP Michaelis-Menten constant for GPP
KmIPP Michaelis-Menten constant for IPP
KmPP Michaelis-Menten constant for PP
KmDMAPP Michaelis-Menten constant for DMAPP
Keq Equilibrium constant
[GPP] GPP concentration
[DMAPP] DMAPP concentration
[IPP] DMAPP concentration
[PP] PP concentration

Strategies for estimating the kinetic parameter values

Calculating the Equilibrium Constant

The equilibrium constant can be calculated using the Van't Hoff Isotherm equation:



K_\mathrm{eq} = exp \left ( \cfrac {-?G^{°'}}{RT} \right )




 = exp \left (  \cfrac {-(XY \text { kJmol}^{-1})}{ (8.31 \text{ JK}^{-1} \text { mol}^{-1} * 289 K} \right )



 = exp \left (  \cfrac { XY \text { kJmol}^{-1} }{ 2401.59 \text{ JK}^{-1}\text { mol}^{-1} }\right)


= exp \left ( \cfrac{ XY \text { Jmol}^{-1}}{2401.59 \text{ JK}^{-1}\text { mol}^{-1}} \right)



=exp \left ( XY \right )


= (INSERT RESULT)


where;

Keq Equilibrium constant
-?G° Gibbs free energy change. For (INSERT ENZYME) it is (INSERT VALUE) kJmol-1
R Gas constant with a value of 8.31 JK-1mol-1
T Temperature which is always expressed in kelvin

Standard Gibbs Free energy

Standard Gibbs Free energy for (INSERT ENZYME) from MetaCyc (EC 4.2.3.16) is (INSERT VALUE) kcal/mol [1].

SI derived unit for Gibbs free energy is Joules per mol (J mol-1). 1 kJ·mol-1 is equal to 0.239 kcal·mol-1.

Therefore, the Gibbs free energy for (INSERT ENZYME) in kJ mol-1 is:

 

 \cfrac {1}{0.239 kcal.mol^-1} * (INSERT VALUE) kcal.mol^-1


= (INSERT RESULT) kJmol^-1


Published Kinetic Parameter Values

Km Values

Km (mM) Unit Substrate / Product Directionality Organism References
Value unit substrate directionality organism Ref



Vmax values

Vmax Unit Directionality Organism References
Value µmol/min/mg (unit) directionality Organism References

Kcat values

Kcat Unit Organism Reference
value s-1 Organism ref e.g. Alonso 1992 [2]

Extracting Information from (INSERT SUBSTRATE/PRODUCT) Production Rates

Amount produced (mg/L) Time (H) Organism Description Reaction Flux (µM/s)
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z

Simulations

References