Limonene Synthase

From ISMOC
Revision as of 16:34, 15 March 2016 by Aliah.hawari (talk | contribs) (Km Values)
Jump to: navigation, search

You can go back to main page of the kinetic model here.

What we know

Issues

Strategies

Reaction catalysed



geranyl diphosphate \rightleftharpoons (−)-(4S)-limonene + diphosphate

Metabolite Background Information

Long metabolite names are abbreviated in the model for clarity and standard identification purposes.

Metabolite Abbreviation Chemical Formula Molar mass (g/mol) ChEBI ChEMBL PubChem
geranyl diphosphate GPP C10H20O7P2 314.209 17211 41432 445995
(-)-4S-limonene Limonene C10H16 136.24 15384 449062 22311 or 439250
diphosphate PP O7P2 173.94 644102

Equation Rate



V_\mathrm{LimSynth} =  Vmax_\mathrm{forward} * \cfrac {\cfrac{[GPP]}{Km_\mathrm{GPP}} * \left ( 1 - \cfrac {[Limonene]*[PP]}{[GPP]*K_\mathrm{eq}} \right )}{1 + \cfrac {[GPP]}{Km_\mathrm{GPP}} + \cfrac {[Limonene]}{Km_\mathrm{Limonene}}  + \cfrac {[PP]}{Km_\mathrm{PP}}  + \cfrac {[Limonene]*[PP]}{Km_\mathrm{Limonene}*Km_\mathrm{PP}}}


Parameter Description Reference
VLimSynth Reaction rate for Limonene Synthase ref
Vmaxforward Maximum reaction rate towards the production of limonene ref
KmGPP Michaelis-Menten constant for GPP ref
KmLimonene Michaelis-Menten constant for Limonene ref
KmPP Michaelis-Menten constant for PP ref
Keq Equilibrium constant ref
[GPP] GPP concentration ref
[Limonene] Limonene concentration ref
[PP] PP concentration ref

Strategies for estimating the kinetic parameter values

Calculating the Equilibrium Constant

The equilibrium constant can be calculated using the Van't Hoff Isotherm equation:



K_\mathrm{eq} = exp \left ( \cfrac {-ΔG^{°'}}{RT} \right )


Failed to parse (Cannot store math image on filesystem.): = exp \left ( \cfrac {-(- 117.36396 \text { kJmol}^{-1})}{ (8.31 \text{ JK}^{-1} \text { mol}^{-1} * 289 K} \right )

Failed to parse (Cannot store math image on filesystem.): = exp \left ( \cfrac { + 117.36396 \text { kJmol}^{-1} }{ 2401.59 \text{ JK}^{-1}\text { mol}^{-1} }\right)

Failed to parse (Cannot store math image on filesystem.): = exp \left ( \cfrac{ 117.364 * 10^3 \text { Jmol}^{-1}}{2401.59 \text{ JK}^{-1}\text { mol}^{-1}} \right)

Failed to parse (Cannot store math image on filesystem.): =exp \left ( 48.8693 \right )

Failed to parse (Cannot store math image on filesystem.): = 1.6736 * 10^{21}


where;

Keq Equilibrium constant
-ΔG° Gibbs free energy change. For Limonene Synthase it is -117.364 kJmol-1
R Gas constant with a value of 8.31 JK-1mol-1
T Temperature which is always expressed in kelvin

Standard Gibbs Free energy

Standard Gibbs Free energy for Limonene Synthase from MetaCyc (EC 4.2.3.16) is -28.049988 kcal/mol [1].

SI derived unit for Gibbs free energy is Joules per mol (J mol-1). 1 kJ·mol−1 is equal to 0.239 kcal·mol−1.

Therefore, the Gibbs free energy for Limonene synthase in kJ mol-1 is:

Failed to parse (Cannot store math image on filesystem.): \cfrac {1}{0.239 kcal.mol^-1} * -28.049988 kcal.mol^-1
Failed to parse (Cannot store math image on filesystem.): = -117.36396 kJmol^-1

Published Kinetic Parameter Values

Km Values

Km (mM) Unit Substrate / Product Directionality Organism References
0.00125 mM GPP forward Ricciocarpos natans Ref
0.0018 mM GPP forward Mentha piperita Ref
0.00625 mM GPP forward Cannabis sativa L. Ref
0.00496 mM GPP forward Cannabis sativa L. Ref
0.0031 mM GPP forward Citrus limon ref
0.016 mM GPP forward Escherichia coli Ref
0.0068 mM GPP forward Cannabis sativa L. Ref
0.0067 mM GPP forward Cannabis sativa L. Ref

Vmax values

Vmax Unit Directionality Organism References
0.08 µmol/min/mg forward Cannabis sativa L. References
0.13 µmol/min/mg forward Cannabis sativa L. References
0.4748 µmol/min/mg forward Citrus limon References
Vmax Unit Directionality Organism References
Vmax Unit Directionality Organism References
Vmax Unit Directionality Organism References

Kcat values

Kcat Unit Organism Reference
0.3 s-1 Mentha piperita & Mentha spicata Alonso 1992 [2]
0.08 s-1 Cannabis sativa L. Reference
0.14 s-1 Cannabis sativa L. Reference
0.02 s-1 E. coli Reference
0.082 s-1 Cannabis sativa L. Reference
0.081 s-1 Cannabis sativa L. Reference
Kcat Unit Organism Reference
Kcat Unit Organism Reference
Kcat Unit Organism Reference

Extracting Information from Limonene Production Rates

Production rates would reflect the flux for this reaction in the forward direction.

Amount produced (mg/L) Time (H) Organism Description Reaction Flux (µM/s)
5 24 Escherichia coli Possible reason for the low limonene production might due to the insufficient supply of IPP and DMAPP [3]. 0.0255
335 48 Escherichia coli Engineered E.coli in which heterologous MVA pathway was installed [4]. 0.8537
35.8 48 Escherichia coli E.coli was engineered to express GPPS, LS, DXS, and IDI [5] . 0.0912
4.87 48 Escherichia coli This was the initial titer. The study established a limonene biosynthesis pathway in E.coli using four different polycistronic operons based on 3 vectors with varied expression strength [5]. 0.0124
17.4 48 Escherichia coli Using a plasmid with DXS and IDI over expressed [5]. 0.0445
430 72 Escherichia coli [4] 0.7306

More detailed information of the values obtained from the literature is listed here .

Simulations

these are mock simulation results

ReactantRatesVSTime.png


Prediction of the changes in substrate concentration over time as catalysed by limonene synthase.

References