Difference between revisions of "Transformation of TXA2 to TXB2"

From ISMOC
Jump to: navigation, search
(Parameters)
(Parameters)
Line 24: Line 24:
 
! Conditions
 
! Conditions
 
! Substrate
 
! Substrate
 +
! Weight
 
! Reference
 
! Reference
 
|-
 
|-
Line 31: Line 32:
 
Temperature: 25°C
 
Temperature: 25°C
 
|3
 
|3
 +
|32
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|-
 
|-
Line 38: Line 40:
 
Temperature: 25°C
 
Temperature: 25°C
 
|3
 
|3
 +
|32
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|-
 
|-
Line 45: Line 48:
 
Temperature: 25°C
 
Temperature: 25°C
 
|4
 
|4
 +
|32
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|-
 
|-
Line 52: Line 56:
 
Temperature: 25°C
 
Temperature: 25°C
 
|4
 
|4
 +
|32
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|-
 
|-
Line 59: Line 64:
 
Temperature: 25°C
 
Temperature: 25°C
 
|5
 
|5
 +
|32
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|-
 
|-
Line 66: Line 72:
 
Temperature: 25°C
 
Temperature: 25°C
 
|6
 
|6
 +
|32
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|-
 
|-
Line 73: Line 80:
 
Temperature: 25°C
 
Temperature: 25°C
 
|7
 
|7
 +
|32
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|-
 
|-
Line 80: Line 88:
 
Temperature: 25°C
 
Temperature: 25°C
 
|8
 
|8
 +
|32
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|-
 
|-
Line 87: Line 96:
 
Temperature: 25°C
 
Temperature: 25°C
 
|8
 
|8
 +
|32
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|<ref name="Ross1982”>[http://pubs.acs.org/doi/pdf/10.1021/ja00370a035 A. Ross "Vinyl epoxide hydrolysis reactions" J. Am. Chem. Soc., 1982, 104 (6), pp 1658–1665]</ref>
 
|-
 
|-
Line 93: Line 103:
 
| 25°C, in imidazole buffer and also in phosphate buffers,  
 
| 25°C, in imidazole buffer and also in phosphate buffers,  
 
| CO2 to H2CO3
 
| CO2 to H2CO3
 +
|32
 
| <ref name="Gibbons1963”>[http://www.jbc.org/content/238/10/3502.full.pdf B. Gibbons "Rate of Hydration of Carbon Dioxide and Dehydration of Carbonic Acid at 25" J Biol Chem. 1963 Oct;238:3502-7]</ref>
 
| <ref name="Gibbons1963”>[http://www.jbc.org/content/238/10/3502.full.pdf B. Gibbons "Rate of Hydration of Carbon Dioxide and Dehydration of Carbonic Acid at 25" J Biol Chem. 1963 Oct;238:3502-7]</ref>
 
|-
 
|-
Line 126: Line 137:
 
! Conditions
 
! Conditions
 
! Substrate
 
! Substrate
 +
! Weight
 
! Reference
 
! Reference
 
|-
 
|-
Line 132: Line 144:
 
|Temperature: 35°C
 
|Temperature: 35°C
 
Vector:Mosquito
 
Vector:Mosquito
 
 
Note: "In solution, it undergoes rapid hydrolysis to form TXB2, a stable but physiologically inactive compound." - therefore they used stable analogues.
 
Note: "In solution, it undergoes rapid hydrolysis to form TXB2, a stable but physiologically inactive compound." - therefore they used stable analogues.
 
|carbocyclic TXA2 (analogue of TXA2)
 
|carbocyclic TXA2 (analogue of TXA2)
 +
|24
 
|<ref name="Alvarenga2010”>[http://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1000547&type=printable P. H. Alvarenga "The Function and Three-Dimensional Structure of a Thromboxane A2/Cysteinyl Leukotriene-Binding Protein from the Saliva of a Mosquito Vector of the Malaria Parasite" PLoS Biol. 2010 Nov 30;8(11):e1000547. doi: 10.1371/journal.pbio.1000547.]</ref>
 
|<ref name="Alvarenga2010”>[http://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1000547&type=printable P. H. Alvarenga "The Function and Three-Dimensional Structure of a Thromboxane A2/Cysteinyl Leukotriene-Binding Protein from the Saliva of a Mosquito Vector of the Malaria Parasite" PLoS Biol. 2010 Nov 30;8(11):e1000547. doi: 10.1371/journal.pbio.1000547.]</ref>
 
|-
 
|-
Line 144: Line 156:
 
Note: "In solution, it undergoes rapid hydrolysis to form TXB2, a stable but physiologically inactive compound." - therefore they used stable analogues.
 
Note: "In solution, it undergoes rapid hydrolysis to form TXB2, a stable but physiologically inactive compound." - therefore they used stable analogues.
 
|[3H]IONO NT-126, a TXA z antagonist,
 
|[3H]IONO NT-126, a TXA z antagonist,
 +
|36
 
|<ref name="Nakahata1992”>[http://ac.els-cdn.com/S0006899310800137/1-s2.0-S0006899310800137-main.pdf?_tid=b2ab095e-155f-11e7-94f0-00000aab0f26&acdnat=1490888822_58d1d45dc3238dede94e4a2f15cada82 N Nakahata et al. "The Presence of Thromboxane A2 Receptors in Cultured Astrocytes From Rabbit Brain" Brain Res 583 (1-2), 100-104. 1992 Jun 26]</ref>
 
|<ref name="Nakahata1992”>[http://ac.els-cdn.com/S0006899310800137/1-s2.0-S0006899310800137-main.pdf?_tid=b2ab095e-155f-11e7-94f0-00000aab0f26&acdnat=1490888822_58d1d45dc3238dede94e4a2f15cada82 N Nakahata et al. "The Presence of Thromboxane A2 Receptors in Cultured Astrocytes From Rabbit Brain" Brain Res 583 (1-2), 100-104. 1992 Jun 26]</ref>
 
|-
 
|-
Line 152: Line 165:
 
|Hydroxysulfamic acid
 
|Hydroxysulfamic acid
 
[[File:HSA.PNG ‎|center|500px]]
 
[[File:HSA.PNG ‎|center|500px]]
 +
|16
 
|<ref name="Littlejohn1989”>[http://www.nrcresearchpress.com/doi/pdf/10.1139/v89-243 D. LITTLEJOHN "The dissociation constant and acid hydrolysis rate of hydroxysulfamic acid"  Can. J. Chem. 67, 1596 (1989).]</ref>
 
|<ref name="Littlejohn1989”>[http://www.nrcresearchpress.com/doi/pdf/10.1139/v89-243 D. LITTLEJOHN "The dissociation constant and acid hydrolysis rate of hydroxysulfamic acid"  Can. J. Chem. 67, 1596 (1989).]</ref>
 
|-
 
|-
Line 159: Line 173:
 
In vitro
 
In vitro
 
|H2O2
 
|H2O2
 +
|16
 
|<ref name="Littlejohn1989”>[http://pubs.rsc.org/-/content/articlepdf/1949/tf/tf9494500224  M. G. EVAN "The dissociation constant and acid hydrolysis rate of hydroxysulfamic acid"  Trans. Faraday Soc., 1949,45, 224-230]</ref>
 
|<ref name="Littlejohn1989”>[http://pubs.rsc.org/-/content/articlepdf/1949/tf/tf9494500224  M. G. EVAN "The dissociation constant and acid hydrolysis rate of hydroxysulfamic acid"  Trans. Faraday Soc., 1949,45, 224-230]</ref>
 
|-
 
|-
Line 165: Line 180:
 
|Oxaliplatin
 
|Oxaliplatin
 
|[[File:Oxaliplatin.PNG ‎|center|500px]]
 
|[[File:Oxaliplatin.PNG ‎|center|500px]]
 +
|16
 
|<ref name="Jerremalm”>[http://www.sciencedirect.com/science/article/pii/S0022354916311649  Elin Jerremalm "Hydrolysis of Oxaliplatin—Evaluation of the Acid Dissociation Constant for the Oxalato Monodentate Complex"  Journal of Pharmaceutical Sciences Volume 92, Issue 2, February 2003, Pages 436–438]</ref>
 
|<ref name="Jerremalm”>[http://www.sciencedirect.com/science/article/pii/S0022354916311649  Elin Jerremalm "Hydrolysis of Oxaliplatin—Evaluation of the Acid Dissociation Constant for the Oxalato Monodentate Complex"  Journal of Pharmaceutical Sciences Volume 92, Issue 2, February 2003, Pages 436–438]</ref>
 
|-
 
|-

Revision as of 09:36, 22 May 2019

Return to overview

Thromboxane A2 is a bioactive molecule which affects vasoactivity and promotes thrombosis. It is unstable due to the epoxide functional group, and as a consequence has a short half-life of 20- 30 seconds. The hydrolysis reaction results in the generation of biologically inactive TXB2.

Reaction

R6 TXA2 - TXB2.jpg

Chemical equation

 TXA2 \rightleftharpoons TXB2

Rate equation

R06.PNG

Parameters

Association Rate Constant (Kf)

Literature values
Value Units Conditions Substrate Weight Reference
3.7e3 ± 0.1e3 M-1 s-1 NaCl04 (0.1 - 0.2 M)

Temperature: 25°C

3 32 [1]
8.7e3 M-1 s-1 KCl (1 M)

Temperature: 25°C

3 32 [1]
1.1e4 ± 0.1e4 M-1 s-1 NaCl04 (0.1 - 0.2 M)

Temperature: 25°C

4 32 [1]
2.4 e4 M-1 s-1 KCl (1M)

Temperature: 25°C

4 32 [1]
3.7e3 ± 0.1e3 M-1 s-1 NaCl04 (0.1 - 0.2 M)

Temperature: 25°C

5 32 [1]
3.6 ± 0.2 M-1 s-1 NaCl04 (0.1 - 0.2 M)

Temperature: 25°C

6 32 [1]
1.7 ± 0.1 M-1 s-1 NaCl04 (0.1 - 0.2 M)

Temperature: 25°C

7 32 [1]
26.7 ± 0.9 M-1 s-1 NaCl04 (0.1 - 0.2 M)

Temperature: 25°C

8 32 [1]
35 M-1 s-1 KCl (1M)

Temperature: 25°C

8 32 [1]
2.25 ± 0.12 M-1 min-1 25°C, in imidazole buffer and also in phosphate buffers, CO2 to H2CO3 32 [2]
Description of the reaction 6 Kf distribution
Mode (M-1 s-1) Confidence Interval Location parameter (µ) Scale parameter (σ)
3.70E+03 3.44E+01 1.10E+01 1.66E+00
The estimated probability distribution for reaction 6 Kf. The value and weight of the literature values used to define the distribution are indicated by an orange dashed line. The x axis is plotted on a log-scale.

Dissociation Rate Constant (Kr)

This is a “Dependent parameter”, meaning that the log-normal distribution for this parameter was calculated using multivariate distributions (this is discussed in detail here). As a result, no confidence interval factor or literature values were cited for this parameter.

Description of the reaction 6 Kr distribution
Mode Location parameter (µ) Scale parameter (σ)
5.28E+01 5.63E+00 1.29E+00
The estimated probability distribution for reaction 6 Kr. The value and weight of the literature values used to define the distribution are indicated by an orange dashed line. The x axis is plotted on a log-scale.

Dissociation Constant

Literature values
Value Units Conditions Substrate Weight Reference
0.000038 mM Temperature: 35°C

Vector:Mosquito Note: "In solution, it undergoes rapid hydrolysis to form TXB2, a stable but physiologically inactive compound." - therefore they used stable analogues.

carbocyclic TXA2 (analogue of TXA2) 24 [3]
0.00000023 mM Temperature: 35°C

Vector:Rabbit cultured astrocytes

Note: "In solution, it undergoes rapid hydrolysis to form TXB2, a stable but physiologically inactive compound." - therefore they used stable analogues.

[3H]IONO NT-126, a TXA z antagonist, 36 [4]
1500 ± 500 (excluded) mM Temperature: 25°C

In vitro

Hydroxysulfamic acid
HSA.PNG
16 [5]
H202.PNG
N/A Temperature: 20°C

In vitro

H2O2 16 [5]
5.9 E-8 N/A Oxaliplatin
Oxaliplatin.PNG
16 [6]
Description of the reaction 6 KD distribution
Mode (M-1 s-1) Confidence Interval Location parameter (µ) Scale parameter (σ)
2.35E-07 1.76E+04 -6.86E+00 2.90E+00
The estimated probability distribution for reaction 6 Kr. The value and weight of the literature values used to define the distribution are indicated by an orange dashed line. The x axis is plotted on a log-scale.

Related Reactions

References