Difference between revisions of "Pyruvate kinase"

From ISMOC
Jump to: navigation, search
Line 7: Line 7:
 
The rate equation is represented by the allosteric regualation model of [http://en.wikipedia.org/wiki/MWC_model Monod, Wyman and Changeux] (MWS). [http://en.wikipedia.org/wiki/Fructose_1,6-bisphosphatase Fru1,6BP] and [http://en.wikipedia.org/wiki/Serine Serine] are activators and [http://en.wikipedia.org/wiki/Adenosine_triphosphate ATP] is inhibiting. Simple [http://en.wikipedia.org/wiki/Michaelis%E2%80%93Menten_kinetics Micahelis-Menten kinetics] (Briggs Haldane) is used for ADP and reverse reaction <ref name="MWC_1965"> Monod J, Wyman J, Changeux J-P (1965) On the Nature of Allosteric Transitions: A Plausible Model . Journal of Molecular Biology 12:88–118 ([http://dx.doi.org/10.1016/S0022-2836(65)80285-6 doi])  </ref>
 
The rate equation is represented by the allosteric regualation model of [http://en.wikipedia.org/wiki/MWC_model Monod, Wyman and Changeux] (MWS). [http://en.wikipedia.org/wiki/Fructose_1,6-bisphosphatase Fru1,6BP] and [http://en.wikipedia.org/wiki/Serine Serine] are activators and [http://en.wikipedia.org/wiki/Adenosine_triphosphate ATP] is inhibiting. Simple [http://en.wikipedia.org/wiki/Michaelis%E2%80%93Menten_kinetics Micahelis-Menten kinetics] (Briggs Haldane) is used for ADP and reverse reaction <ref name="MWC_1965"> Monod J, Wyman J, Changeux J-P (1965) On the Nature of Allosteric Transitions: A Plausible Model . Journal of Molecular Biology 12:88–118 ([http://dx.doi.org/10.1016/S0022-2836(65)80285-6 doi])  </ref>
  
<center><math>V_m \left( \left(\frac{\frac{[ADP]}{K_{ADP}}}{1+\frac{[ADP]}{K_{ADP}}}\right) \left( \frac{\frac{[PEP]}{K_{PEP}}\left( 1+\frac{[PEP]}{K_{PEP}}  \right)^3 }{ \frac{L \left( 1 + \frac{[ATP]}{Ki_{ADP}} \right)^4 }{ \left( 1 + \frac{[SER]}{Ka_{SER}} \right)^4 \left(  1 + \frac{F1,6BP}{Ka_{F1,6BP}} \right)^4  } + \left( 1 + \frac{[PEP]}{K_{PEP}} \right)^4} \right) - \left( \frac{\frac{[ATP][PYR]}{K_{ATP}K_{PYR}K_{eq}}}{\frac{[ATP]}{K_{ATP}} + \frac{[PYR]}{K_{PYR}} + \frac{[ATP][PYR]}{K_{ATP}K_{PYR} } + 1} \right)  \right)</math></center>
+
<center><math>V_m \left( \left(\frac{\frac{[ADP]}{K_{ADP}}}{1+\frac{[ADP]}{K_{ADP}}}\right) \left( \frac{\frac{[PEP]}{K_{PEP}}\left( 1+\frac{[PEP]}{K_{PEP}}  \right)^3 }{ \frac{L \left( 1 + \frac{[ATP]}{Ki_{ADP}} \right)^4 }{ \left( 1 + \frac{[SER]}{Ka_{SER}} \right)^4 \left(  1 + \frac{F1,6BP}{Ka_{F1,6BP}} \right)^4  } + \left( 1 + \frac{[PEP]}{K_{PEP}} \right)^4} \right) - \left( \frac{\frac{[ATP][PYR]}{K_{ATP} \times K_{PYR}K_{eq}}}{\frac{[ATP]}{K_{ATP}} + \frac{[PYR]}{K_{PYR}} + \frac{[ATP][PYR]}{K_{ATP} \times K_{PYR} } + 1} \right)  \right)</math></center>
  
 
==Parameter values==
 
==Parameter values==
 +
{|class="wikitable"
 +
! Parameter
 +
! Value
 +
! Organism
 +
! Remarks
 +
|-
 +
|<math>V_{mf}</math>
 +
|0.06 <ref name="Hernandez_2006"> Marín-Hernández A , Rodríguez-Enríquez S, Vital-González P A, ''et al.'' (2006). ''Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase''. FEBS J., 273 , pp. 1975–1988([http://dx.doi.org/doi:10.1111/j.1742-4658.2006.05214.x doi]) </ref>
 +
|rowspan="6"|HeLa cell line
 +
|rowspan="6"|
 +
|-
 +
|<math>K_{eq}</math>
 +
|651<ref name="arbitrary">Arbitrary value</ref>
 +
|-
 +
|<math>Km_{Glucose}</math>
 +
|0.1<ref name="Hernandez2011"></ref>
 +
|-
 +
|<math>Km_{ATP}</math>
 +
|1.1<ref name="Hernandez2011"></ref>
 +
|-
 +
|<math>Km_{Glc6P}</math>
 +
|<math>2e^{-002}</math><ref name="Hernandez2011"></ref>
 +
|-
 +
|<math>Km_{ADP}</math>
 +
|3.5<ref name="Hernandez2011"></ref>
 +
|}
 +
  
 
==Alternative parameter values==
 
==Alternative parameter values==

Revision as of 16:57, 4 March 2014

Pyruvate kinase is a transferase enzyme that catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to ADP, yielding one molecule of pyruvate and one molecule of ATP.

Chemical reaction

 PEP + ADP \rightleftharpoons Pyrvate + ATP

Rate equation

The rate equation is represented by the allosteric regualation model of Monod, Wyman and Changeux (MWS). Fru1,6BP and Serine are activators and ATP is inhibiting. Simple Micahelis-Menten kinetics (Briggs Haldane) is used for ADP and reverse reaction [1]

V_m \left( \left(\frac{\frac{[ADP]}{K_{ADP}}}{1+\frac{[ADP]}{K_{ADP}}}\right) \left( \frac{\frac{[PEP]}{K_{PEP}}\left( 1+\frac{[PEP]}{K_{PEP}}  \right)^3 }{ \frac{L \left( 1 + \frac{[ATP]}{Ki_{ADP}} \right)^4 }{ \left( 1 + \frac{[SER]}{Ka_{SER}} \right)^4 \left(  1 + \frac{F1,6BP}{Ka_{F1,6BP}} \right)^4  } + \left( 1 + \frac{[PEP]}{K_{PEP}} \right)^4} \right) - \left( \frac{\frac{[ATP][PYR]}{K_{ATP} \times K_{PYR}K_{eq}}}{\frac{[ATP]}{K_{ATP}} + \frac{[PYR]}{K_{PYR}} + \frac{[ATP][PYR]}{K_{ATP} \times K_{PYR} } + 1} \right)  \right)

Parameter values

Parameter Value Organism Remarks
V_{mf} 0.06 [2] HeLa cell line
K_{eq} 651[3]
Km_{Glucose} 0.1[4]
Km_{ATP} 1.1[4]
Km_{Glc6P} 2e^{-002}[4]
Km_{ADP} 3.5[4]


Alternative parameter values

References

  1. Monod J, Wyman J, Changeux J-P (1965) On the Nature of Allosteric Transitions: A Plausible Model . Journal of Molecular Biology 12:88–118 (doi)
  2. Marín-Hernández A , Rodríguez-Enríquez S, Vital-González P A, et al. (2006). Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J., 273 , pp. 1975–1988(doi)
  3. Arbitrary value
  4. 4.0 4.1 4.2 4.3 Cite error: Invalid <ref> tag; no text was provided for refs named Hernandez2011