Difference between revisions of "Geranyl diphosphate synthase (GPPS)"

From ISMOC
Jump to: navigation, search
(Reaction catalysed)
(Reaction catalysed)
Line 34: Line 34:
 
dimethylallyl diphosphate + isopentenyl diphosphate \rightleftharpoons geranyl diphosphate + diphosphate
 
dimethylallyl diphosphate + isopentenyl diphosphate \rightleftharpoons geranyl diphosphate + diphosphate
  
 +
</math>
 +
 +
:::::::::::::<math>
 
DMAPP + IPP \rightleftharpoons GPP + PP
 
DMAPP + IPP \rightleftharpoons GPP + PP
 
 
</math>
 
</math>
  

Revision as of 17:52, 23 March 2016

You can go back to main page of the kinetic model here.

Legend:

Have not started ·· 1 -2 data found ·· 3-4 data found ·· sufficient data found/estimated ·· data distribution generated ·· data sampled
to do DONE!

What we know

Issues

Strategies

Reaction catalysed



dimethylallyl diphosphate + isopentenyl diphosphate \rightleftharpoons geranyl diphosphate + diphosphate

DMAPP + IPP \rightleftharpoons GPP + PP

Metabolite Background Information

Long metabolite names are abbreviated in the model for clarity and standard identification purposes.

Metabolite Abbreviation Chemical Formula Molar mass (g/mol) ChEBI ChEMBL PubChem
dimethylallyl diphosphate DMAPP
isopentenyl diphosphate IPP
geranyl diphosphate GPP C10H20O7P2 314.209 17211 41432 445995
diphosphate PP O7P2 173.94 644102

Equation Rate

Failed to parse (Cannot store math image on filesystem.): V_\mathrm{GPPS} = Vmax_\mathrm{forward} * \cfrac { \left (\cfrac{[DMAPP]}{Km_\mathrm{DMAPP}} * \cfrac{[IPP]}{Km_\mathrm{IPP}}\right )* \left ( 1 - \cfrac {[GPP]*[PP]}{[GPP]*[PP]*K_\mathrm{eq}} \right )}{1 + \cfrac {[GPP]}{Km_\mathrm{GPP}} + \cfrac {[Limonene]}{Km_\mathrm{Limonene}} + \cfrac {[PP]}{Km_\mathrm{PP}} + \cfrac {[Limonene]*[PP]}{Km_\mathrm{Limonene}*Km_\mathrm{PP}}}


Parameter Description
VLimSynth Reaction rate for Limonene Synthase
Vmaxforward Maximum reaction rate towards the production of limonene
KmGPP Michaelis-Menten constant for GPP
KmLimonene Michaelis-Menten constant for Limonene
KmPP Michaelis-Menten constant for PP
Keq Equilibrium constant
[GPP] GPP concentration
[Limonene] Limonene concentration
[PP] PP concentration

Strategies for estimating the kinetic parameter values

Calculating the Equilibrium Constant

The equilibrium constant can be calculated using the Van't Hoff Isotherm equation:



K_\mathrm{eq} = exp \left ( \cfrac {-?G^{°'}}{RT} \right )




 = exp \left (  \cfrac {-(XY \text { kJmol}^{-1})}{ (8.31 \text{ JK}^{-1} \text { mol}^{-1} * 289 K} \right )



 = exp \left (  \cfrac { XY \text { kJmol}^{-1} }{ 2401.59 \text{ JK}^{-1}\text { mol}^{-1} }\right)


= exp \left ( \cfrac{ XY \text { Jmol}^{-1}}{2401.59 \text{ JK}^{-1}\text { mol}^{-1}} \right)



=exp \left ( XY \right )


= (INSERT RESULT)


where;

Keq Equilibrium constant
-?G° Gibbs free energy change. For (INSERT ENZYME) it is (INSERT VALUE) kJmol-1
R Gas constant with a value of 8.31 JK-1mol-1
T Temperature which is always expressed in kelvin

Standard Gibbs Free energy

Standard Gibbs Free energy for (INSERT ENZYME) from MetaCyc (EC 4.2.3.16) is (INSERT VALUE) kcal/mol [1].

SI derived unit for Gibbs free energy is Joules per mol (J mol-1). 1 kJ·mol-1 is equal to 0.239 kcal·mol-1.

Therefore, the Gibbs free energy for (INSERT ENZYME) in kJ mol-1 is:

 

 \cfrac {1}{0.239 kcal.mol^-1} * (INSERT VALUE) kcal.mol^-1


= (INSERT RESULT) kJmol^-1


Published Kinetic Parameter Values

Km Values

Km (mM) Unit Substrate / Product Directionality Organism References
Value unit substrate directionality organism Ref


Vmax values

Vmax Unit Directionality Organism References
Value µmol/min/mg (unit) directionality Organism References

Kcat values

Kcat Unit Organism Reference
value s-1 Organism ref e.g. Alonso 1992 [2]

Extracting Information from (INSERT SUBSTRATE/PRODUCT) Production Rates

Amount produced (mg/L) Time (H) Organism Description Reaction Flux (µM/s)
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z
X X Y Z Z

Simulations

References