Difference between revisions of "Limonene Synthase"

From ISMOC
Jump to: navigation, search
(Simulations)
Line 222: Line 222:
 
[[File:AllSubstrateConcentrationVsTime.png|left|alt=Prediction of the changes in substrate concentration over time as catalysed by limonene synthase.|Substrate concentration vs. time (min).]]  
 
[[File:AllSubstrateConcentrationVsTime.png|left|alt=Prediction of the changes in substrate concentration over time as catalysed by limonene synthase.|Substrate concentration vs. time (min).]]  
 
I'll insert table of parameter values used in the simulation here.
 
I'll insert table of parameter values used in the simulation here.
 +
 +
  
 
== References ==
 
== References ==
 
<references />
 
<references />

Revision as of 17:16, 24 February 2016

You can go back to main page of the kinetic model here.

What we know

Issues

Strategies

Reaction catalysed



geranyl diphosphate \rightleftharpoons (−)-(4S)-limonene + diphosphate

Metabolite Background Information

Long metabolite names are abbreviated in the model for clarity and standard identification purposes.

Metabolite Abbreviation Chemical Formula Molar mass (g/mol) ChEBI ChEMBL PubChem
geranyl diphosphate GPP C10H20O7P2 314.209 17211 41432 445995
(-)-4S-limonene Limonene C10H16 136.24 15384 449062 22311 or 439250
diphosphate PP O7P2 173.94 644102

Equation Rate



V_\mathrm{LimSynth} =  Vmax_\mathrm{forward} * \cfrac {\cfrac{[GPP]}{Km_\mathrm{GPP}} * \left ( 1 - \cfrac {[Limonene]*[PP]}{[GPP]*K_\mathrm{eq}} \right )}{1 + \cfrac {[GPP]}{Km_\mathrm{GPP}} + \cfrac {[Limonene]}{Km_\mathrm{Limonene}}  + \cfrac {[PP]}{Km_\mathrm{PP}}  + \cfrac {[Limonene]*[PP]}{Km_\mathrm{Limonene}*Km_\mathrm{PP}}}


Parameter Description Reference
VLimSynth Reaction rate for Limonene Synthase ref
Vmaxforward Maximum reaction rate towards the production of limonene ref
KmGPP Michaelis-Menten constant for GPP ref
KmLimonene Michaelis-Menten constant for Limonene ref
KmPP Michaelis-Menten constant for PP ref
Keq Equilibrium constant ref
[GPP] GPP concentration ref
[Limonene] Limonene concentration ref
[PP] PP concentration ref

Strategies for estimating the kinetic parameter values

Calculating the Equilibrium Constant

The equilibrium constant can be calculated using the Van't Hoff Isotherm equation:



K_\mathrm{eq} = exp \left ( \cfrac {-ΔG^{°'}}{RT} \right )


Failed to parse (Cannot store math image on filesystem.): = exp \left ( \cfrac {-(- 117.36396 \text { kJmol}^{-1})}{ (8.31 \text{ JK}^{-1} \text { mol}^{-1} * 289 K} \right )

Failed to parse (Cannot store math image on filesystem.): = exp \left ( \cfrac { + 117.36396 \text { kJmol}^{-1} }{ 2401.59 \text{ JK}^{-1}\text { mol}^{-1} }\right)

Failed to parse (Cannot store math image on filesystem.): = exp \left ( \cfrac{ 117.364 * 10^3 \text { Jmol}^{-1}}{2401.59 \text{ JK}^{-1}\text { mol}^{-1}} \right)

Failed to parse (Cannot store math image on filesystem.): =exp \left ( 48.8693 \right )

Failed to parse (Cannot store math image on filesystem.): = 1.6736 * 10^{21}


where;

Keq Equilibrium constant
-ΔG° Gibbs free energy change. For Limonene Synthase it is -117.364 kJmol-1
R Gas constant with a value of 8.31 JK-1mol-1
T Temperature which is always expressed in kelvin

Standard Gibbs Free energy

Standard Gibbs Free energy for Limonene Synthase from MetaCyc (EC 4.2.3.16) is -28.049988 kcal/mol [1].

SI derived unit for Gibbs free energy is Joules per mol (J mol-1). 1 kJ·mol−1 is equal to 0.239 kcal·mol−1.

Therefore, the Gibbs free energy for Limonene synthase in kJ mol-1 is:

Failed to parse (Cannot store math image on filesystem.): \cfrac {1}{0.239 kcal.mol^-1} * -28.049988 kcal.mol^-1
Failed to parse (Cannot store math image on filesystem.): = -117.36396 kJmol^-1

Extracting Information from Limonene Production Rates

Amount produced (mg/L) Time (H) Organism Description Reaction Flux (µM/s)
5 24 Escherichia coli Possible reason for the low limonene production might due to the insufficient supply of IPP and DMAPP [2]. 0.0255
335 48 Escherichia coli Engineered E.coli in which heterologous MVA pathway was installed [3]. 0.8537
35.8 48 Escherichia coli E.coli was engineered to express GPPS, LS, DXS, and IDI [4] . 0.0912
4.87 48 Escherichia coli This was the initial titer. The study established a limonene biosynthesis pathway in E.coli using four different polycistronic operons based on 3 vectors with varied expression strength [5]. 0.0124
17.4 48 Escherichia coli Using a plasmid with DXS and IDI over expressed [6]. 0.0445
430 72 Escherichia coli [7] 0.7306

Published Kinetic Parameter Values

Km (mM) Vmax Kcat (s-1) Kcat/Km Organism Description
0.00125 - - - Ricciocarpos natans GPP -> Limonene
0.0018 - - - Mentha piperita GPP -> Limonene
0.00625 0.08 µmol/min/mg 0.08 1.5 Cannabis sativa L. GPP -> Limonene
0.00496 0.13 µmol/min/mg 0.14 2.9 Cannabis sativa L. GPP -> Limonene
0.0031 0.4748 µmol/min/mg - - Citrus limon GPP -> Limonene
0.016 - 0.02 - Escherichia coli GPP -> Limonene
0.0068 - 0.082 - Cannabis sativa L. GPP -> Limonene
0.0067 - 0.081 - Cannabis sativa L. GPP -> Limonene

Simulations

ReactantRatesVSTime.png


Prediction of the changes in substrate concentration over time as catalysed by limonene synthase.

I'll insert table of parameter values used in the simulation here.


References