Difference between revisions of "Glycogen synthase"

From ISMOC
Jump to: navigation, search
Line 1: Line 1:
'''Glycogen synthase''' ('''UDP-glucose-glycogen glucosyltransferase''') converts [http://en.wikipedia.org/wiki/Glucose glucose] to [http://en.wikipedia.org/wiki/Glycogen glycogen]. It takes short polymers of glucose and converts them into long polymers one by one into a polymeric chain for storage as [http://en.wikipedia.org/wiki/Glycogen glycogen].
+
'''Glycogen synthase''' ('''GS''') converts [http://en.wikipedia.org/wiki/Glucose glucose] to [http://en.wikipedia.org/wiki/Glycogen glycogen]. It takes short polymers of glucose and converts them into long polymers one by one into a polymeric chain for storage as [http://en.wikipedia.org/wiki/Glycogen glycogen].
  
 
==Chemical equation==
 
==Chemical equation==
Line 6: Line 6:
  
 
==Rate equation==
 
==Rate equation==
MWC model (Monod-Wyman-Changeux model) is used to model the reaction mechanism of this enzyme.<ref name="Palm_thesis_2013> Palm, D.C. (2013). ''The regulatory design of glycogen metabolism in mammalian skeletal muscle'' (Ph.D.). University of Stellenbosch</ref>
+
MWC model (Monod-Wyman-Changeux model) is used to model the reaction mechanism of this enzyme.<ref name="Palm_thesis_2013> Palm, D.C. (2013). ''The regulatory design of glycogen metabolism in mammalian skeletal muscle'' (Ph.D.). University of Stellenbosch</ref>. Glc6P activates GS by binding to an allosteric site of this enzyme.
 
<center><math>\frac{K_{cat,r}[GS]n\frac{[UDPG]}{K_{UDPG}} \left( 1 + \frac{[UDPG]}{K_{UDPG}} + \frac{[ATP]}{K'_{r,ATP}}  \right)^{n-1}}{\left( 1 + \frac{[UDPG]}{K_{UDPG}} + \frac{[ATP]}{K'_{ATP}}  \right)^n L_{0} \left( \frac{1 + \frac{[Glc6P]}{K_{t,Glc6P}} + \frac{[ATP]}{K_{t,ATP}}  }{1 + \frac{[Glc6P]}{K_{r,Glc6P}} + \frac{[ATP]}{K_{r,ATP}} }  \right)^n  + \left( 1 + \frac{[UDPG]}{K_{UDPG}} + \frac{[ATP]}{K'_{r,ATP}}  \right)^n  }</math></center>
 
<center><math>\frac{K_{cat,r}[GS]n\frac{[UDPG]}{K_{UDPG}} \left( 1 + \frac{[UDPG]}{K_{UDPG}} + \frac{[ATP]}{K'_{r,ATP}}  \right)^{n-1}}{\left( 1 + \frac{[UDPG]}{K_{UDPG}} + \frac{[ATP]}{K'_{ATP}}  \right)^n L_{0} \left( \frac{1 + \frac{[Glc6P]}{K_{t,Glc6P}} + \frac{[ATP]}{K_{t,ATP}}  }{1 + \frac{[Glc6P]}{K_{r,Glc6P}} + \frac{[ATP]}{K_{r,ATP}} }  \right)^n  + \left( 1 + \frac{[UDPG]}{K_{UDPG}} + \frac{[ATP]}{K'_{r,ATP}}  \right)^n  }</math></center>
  

Revision as of 17:39, 28 February 2014

Glycogen synthase (GS) converts glucose to glycogen. It takes short polymers of glucose and converts them into long polymers one by one into a polymeric chain for storage as glycogen.

Chemical equation

 UDPG + Glucose \rightarrow UDP + Glycogen

Rate equation

MWC model (Monod-Wyman-Changeux model) is used to model the reaction mechanism of this enzyme.[1]. Glc6P activates GS by binding to an allosteric site of this enzyme.

\frac{K_{cat,r}[GS]n\frac{[UDPG]}{K_{UDPG}} \left( 1 + \frac{[UDPG]}{K_{UDPG}} + \frac{[ATP]}{K'_{r,ATP}}  \right)^{n-1}}{\left( 1 + \frac{[UDPG]}{K_{UDPG}} + \frac{[ATP]}{K'_{ATP}}  \right)^n L_{0} \left( \frac{1 + \frac{[Glc6P]}{K_{t,Glc6P}} + \frac{[ATP]}{K_{t,ATP}}  }{1 + \frac{[Glc6P]}{K_{r,Glc6P}} + \frac{[ATP]}{K_{r,ATP}} }  \right)^n  + \left( 1 + \frac{[UDPG]}{K_{UDPG}} + \frac{[ATP]}{K'_{r,ATP}}  \right)^n  }

Parameter values

References

  1. Palm, D.C. (2013). The regulatory design of glycogen metabolism in mammalian skeletal muscle (Ph.D.). University of Stellenbosch