Difference between revisions of "Mitocondrial pyruvate metabolism"

From ISMOC
Jump to: navigation, search
Line 13: Line 13:
 
<center><math> v=K_1A-K_2B</math></center><br>
 
<center><math> v=K_1A-K_2B</math></center><br>
 
<center><math> v=k_1A \left(1-\frac{K_2B}{K_1A} \right)</math></center><br>
 
<center><math> v=k_1A \left(1-\frac{K_2B}{K_1A} \right)</math></center><br>
 +
Considering <math>K_{eq} = \frac{K_1}{K_2}</math> and <math>\tau = \frac{P_1P_2 \ldots}{S_1S_2 \ldots}</math> we have,
 
<center><math> v=k_1A \left(1-\frac{\tau}{K_{eq}} \right)</math></center><br>
 
<center><math> v=k_1A \left(1-\frac{\tau}{K_{eq}} \right)</math></center><br>
  

Revision as of 10:32, 12 May 2014


Mitocondrial pyruvate metabolism(MPM) is an enzyme that generates ATP form pyruvate.

Chemical reaction

 Pyruvate  + 13ADP + 13Pi \rightarrow 13ATP

Rate equation

  • Chemical reactions proceed to equilibrium within closed systems. For a simple reaction A \rightarrow B it is defined as K_{eq} = \frac{[B]_{eq}}{[A]_{eq}} where forward and reverse rates are equal.
  • Equilibrium is not reached in open system due to influx and outflux. Mass action ratio[1] \tau for A \rightarrow B reaction is defined as \tau = \frac{[B]_{ob}}{[A]_{ob}} where subscript ob represents observable at a given point.
  • Deviation from equilibrium is measured with Disequilibrium constant \rho as \rho = \frac{\tau}{K_{eq}}
  • Given the simple uni molecular reaction A \leftrightarrow B the mass action equation can be modified as
Failed to parse (Cannot store math image on filesystem.): v=K_1A-K_2B

Failed to parse (Cannot store math image on filesystem.): v=k_1A \left(1-\frac{K_2B}{K_1A} \right)

Considering K_{eq} = \frac{K_1}{K_2} and \tau = \frac{P_1P_2 \ldots}{S_1S_2 \ldots} we have,

Failed to parse (Cannot store math image on filesystem.): v=k_1A \left(1-\frac{\tau}{K_{eq}} \right)

Constant flux is used where  v = 1 \times 10^{-4} is considered.

Parameter values

Parameter Value Organism Remarks
V 1 \times 10^{-4} [2] HeLa cell line Constant flux

References

  1. Hess B. and Brand K. (1965), Enzymes and metabolite profiles. In Control of energy metabolism. III. Ed. B. Chance, R. K. Estabrook and J. R. Williamson. New York: Academic Press
  2. Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767 (doi)