Difference between revisions of "Phosphoglucomutase"

From ISMOC
Jump to: navigation, search
Line 8: Line 8:
 
==Rate equation==
 
==Rate equation==
 
Mono substrate reversible Michelis-Menten with Haldane substitution is used as a rate law. <ref name="Palm_thesis_2013> Palm, D.C. (2013). ''The regulatory design of glycogen metabolism in mammalian skeletal muscle'' (Ph.D.). University of Stellenbosch</ref>
 
Mono substrate reversible Michelis-Menten with Haldane substitution is used as a rate law. <ref name="Palm_thesis_2013> Palm, D.C. (2013). ''The regulatory design of glycogen metabolism in mammalian skeletal muscle'' (Ph.D.). University of Stellenbosch</ref>
<center><math> \frac{\frac{V_{max}}{K_{Glc6P}}\left( [Glc6P] - \frac{[Glc1P]}{K_{eq}} \right) }{1 + \frac{[Glc6P]}{K_{Glc6P}} + \frac{[Glc1P]}{K_{Glc1P}} } </math></center>
+
<center><math> \frac{\frac{V_{max}}{Km_{Glc6P}}\left( [Glc6P] - \frac{[Glc1P]}{K_{eq}} \right) }{1 + \frac{[Glc6P]}{Km_{Glc6P}} + \frac{[Glc1P]}{Km_{Glc1P}} } </math></center>
  
 
==Parameter values==
 
==Parameter values==
Line 24: Line 24:
 
|
 
|
 
|-
 
|-
|<math>K_{Glc6P}</math>
+
|<math>Km_{Glc6P}</math>
 
|<math>5.7 \times 10^{-2} </math> <ref name="gao_2004">Gao H & Leary JA (2004). ''Kinetic measurements of phosphoglucomutase by direct analysis of glucose-1-phosphate and glucose-6-phosphate using ion/molecule reactions and Fourier transform ion cyclotron resonance mass spectrometry.'' Anal Biochem 329, 269–275.</ref>
 
|<math>5.7 \times 10^{-2} </math> <ref name="gao_2004">Gao H & Leary JA (2004). ''Kinetic measurements of phosphoglucomutase by direct analysis of glucose-1-phosphate and glucose-6-phosphate using ion/molecule reactions and Fourier transform ion cyclotron resonance mass spectrometry.'' Anal Biochem 329, 269–275.</ref>
 
|mM
 
|mM
Line 31: Line 31:
 
|-
 
|-
 
|<math>Km_{Glc1P}</math>
 
|<math>Km_{Glc1P}</math>
|<math>1.05 \times 10^{-2} </math> <ref name="gao_2004">Gao H & Leary JA (2004). ''Kinetic measurements of phosphoglucomutase by direct analysis of glucose-1-phosphate and glucose-6-phosphate using ion/molecule reactions and Fourier transform ion cyclotron resonance mass spectrometry.'' Anal Biochem 329, 269–275.</ref>
+
|<math>0.01054 </math> <ref name="gao_2004">Gao H & Leary JA (2004). ''Kinetic measurements of phosphoglucomutase by direct analysis of glucose-1-phosphate and glucose-6-phosphate using ion/molecule reactions and Fourier transform ion cyclotron resonance mass spectrometry.'' Anal Biochem 329, 269–275.</ref>
 +
|mM
 +
|Rabbit muscle
 +
|
 +
|}
 +
 
 +
==Parameters with uncertainty==
 +
* The value of <math>Km_{Glc6P}</math> using traditional meethods vary in between 0.03 - 0.05 mM. Using these two values as the maximum and the minimum we calculate the mean and standard deviation as <math>0.04 \pm 0.005</math>
 +
 
 +
 
 +
{|class="wikitable"
 +
! Parameter
 +
! Value
 +
! Units
 +
! Organism
 +
! Remarks
 +
|-
 +
|<math>V_{max}</math>
 +
|<math>2078</math> <ref name = "albe_1990">Albe KR, Butler MH & Wright BE (1990). ''Cellular concentrations of enzymes and their substrates''. J Theor Biol 143, 163–195. </ref>
 +
|<math>\text{mM min}^{-1}</math>
 +
|Rabbit muscle
 +
|
 +
|-
 +
|<math>Km_{Glc6P}</math>
 +
|<math>0.04 \pm 0.005</math>
 +
|mM
 +
|Rabbit muscle
 +
|
 +
|-
 +
|<math>Km_{Glc1P}</math>
 +
|<math>0.01054 \pm 0.0009 </math> <ref name="gao_2004">Gao H & Leary JA (2004). ''Kinetic measurements of phosphoglucomutase by direct analysis of glucose-1-phosphate and glucose-6-phosphate using ion/molecule reactions and Fourier transform ion cyclotron resonance mass spectrometry.'' Anal Biochem 329, 269–275.</ref>
 
|mM
 
|mM
 
|Rabbit muscle
 
|Rabbit muscle

Revision as of 10:47, 8 May 2014


Phosphoglucomutase (PGLM) facilitates the interconversion of glucose 1-phosphate and glucose 6-phosphate by transfering a phosphate group on an α-D-glucose monomer from the 1' to the 6' position in the forward direction or the 6' to the 1' position in the reverse direction.

Chemical reaction

Glc6P \rightleftharpoons Glc1P

Rate equation

Mono substrate reversible Michelis-Menten with Haldane substitution is used as a rate law. [1]

 \frac{\frac{V_{max}}{Km_{Glc6P}}\left( [Glc6P] - \frac{[Glc1P]}{K_{eq}} \right) }{1 + \frac{[Glc6P]}{Km_{Glc6P}} + \frac{[Glc1P]}{Km_{Glc1P}} }

Parameter values

Parameter Value Units Organism Remarks
V_{max} 2078 [2] \text{mM min}^{-1} Rabbit muscle
Km_{Glc6P} 5.7 \times 10^{-2} [3] mM Rabbit muscle
Km_{Glc1P} 0.01054 [3] mM Rabbit muscle

Parameters with uncertainty

  • The value of Km_{Glc6P} using traditional meethods vary in between 0.03 - 0.05 mM. Using these two values as the maximum and the minimum we calculate the mean and standard deviation as 0.04 \pm 0.005


Parameter Value Units Organism Remarks
V_{max} 2078 [2] \text{mM min}^{-1} Rabbit muscle
Km_{Glc6P} 0.04 \pm 0.005 mM Rabbit muscle
Km_{Glc1P} 0.01054 \pm 0.0009 [3] mM Rabbit muscle

References

  1. Palm, D.C. (2013). The regulatory design of glycogen metabolism in mammalian skeletal muscle (Ph.D.). University of Stellenbosch
  2. 2.0 2.1 Albe KR, Butler MH & Wright BE (1990). Cellular concentrations of enzymes and their substrates. J Theor Biol 143, 163–195.
  3. 3.0 3.1 3.2 Gao H & Leary JA (2004). Kinetic measurements of phosphoglucomutase by direct analysis of glucose-1-phosphate and glucose-6-phosphate using ion/molecule reactions and Fourier transform ion cyclotron resonance mass spectrometry. Anal Biochem 329, 269–275.