Difference between revisions of "Glycogen phosphorylase"

From ISMOC
Jump to: navigation, search
(Parameter values)
Line 10: Line 10:
  
 
<br><br><br>
 
<br><br><br>
An alternative rate equation without considering the allosteric regulation is given as <ref name="Lambeth_2002> Lambeth M.J. &  Kushmerick M.J. (2002). ''A computational model for glycogenolysis in skeletal muscle''. Ann Biomed Eng 30, 808–827</ref>
+
An alternative rate equation without considering the allosteric regulation is given as <ref name="Lambeth_2002"> Lambeth M.J. &  Kushmerick M.J. (2002). ''A computational model for glycogenolysis in skeletal muscle''. Ann Biomed Eng 30, 808–827</ref>
  
 
<center><math> \frac{V_{maxf} \frac{Glycogen_{n+1} \times Pi}{K_{iGlyf} \times K_{Pi}} -\frac{V_{maxf} \times K_{Glyb} \times K_{iGlc1P}}{K_{iGlyf} \times K_{Pi} \times Keq} \times \frac{Glycogen_n \times Glc1P}{K_{Glyb} \times K_{iGlc1P}} }{1 + \frac{Glycogen_{n+1}}{K_{iGlyf}} + \frac{Pi}{K_{iPi}} + \frac{Glycogen_n}{K_{iGlyb}} + \frac{Glc1P}{K_{iGlc1P}} \frac{Glycogen_{n+1} \times Pi}{K_{Glyf} \times K_{iPi}} + \frac{Glycogen_n \times Glc1P}{K_{Glyb} \times K_{iGlc1P}} } </math></center>
 
<center><math> \frac{V_{maxf} \frac{Glycogen_{n+1} \times Pi}{K_{iGlyf} \times K_{Pi}} -\frac{V_{maxf} \times K_{Glyb} \times K_{iGlc1P}}{K_{iGlyf} \times K_{Pi} \times Keq} \times \frac{Glycogen_n \times Glc1P}{K_{Glyb} \times K_{iGlc1P}} }{1 + \frac{Glycogen_{n+1}}{K_{iGlyf}} + \frac{Pi}{K_{iPi}} + \frac{Glycogen_n}{K_{iGlyb}} + \frac{Glc1P}{K_{iGlc1P}} \frac{Glycogen_{n+1} \times Pi}{K_{Glyf} \times K_{iPi}} + \frac{Glycogen_n \times Glc1P}{K_{Glyb} \times K_{iGlc1P}} } </math></center>
Line 105: Line 105:
 
|-
 
|-
 
|<math>K_{iGlyf}</math>
 
|<math>K_{iGlyf}</math>
|15<ref name="Lambeth_2002></ref>
+
|15<ref name="Lambeth_2002"></ref>
 
|mM
 
|mM
 
|-
 
|-
 
|<math>K_{Pi}</math>
 
|<math>K_{Pi}</math>
|4 <ref name="Lambeth_2002></ref>
+
|4 <ref name="Lambeth_2002"></ref>
 
|mM
 
|mM
 
|-
 
|-
 
|<math>K_{Glyb}</math>
 
|<math>K_{Glyb}</math>
|0.15 <ref name="Lambeth_2002></ref>
+
|0.15 <ref name="Lambeth_2002"></ref>
 
|mM
 
|mM
 
|-
 
|-
 
|<math>K_{iGlc1P}</math>
 
|<math>K_{iGlc1P}</math>
|10.1 <ref name="Lambeth_2002></ref>
+
|10.1 <ref name="Lambeth_2002"></ref>
 
|mM
 
|mM
 
|-
 
|-
 
|<math>K_{iPi}</math>
 
|<math>K_{iPi}</math>
|4.6 <ref name="Lambeth_2002></ref>
+
|4.6 <ref name="Lambeth_2002"></ref>
 
|mM
 
|mM
 
|-
 
|-
 
|<math>K_{iGlyb}</math>
 
|<math>K_{iGlyb}</math>
|4.4 <ref name="Lambeth_2002></ref>
+
|4.4 <ref name="Lambeth_2002"></ref>
 
|mM
 
|mM
 
|-
 
|-
 
|<math>K_{Glyf}</math>
 
|<math>K_{Glyf}</math>
|1.7 <ref name="Lambeth_2002></ref>
+
|1.7 <ref name="Lambeth_2002"></ref>
 
|mM
 
|mM
 
|-
 
|-
 
|<math>Keq</math>
 
|<math>Keq</math>
|0.42 <ref name="Lambeth_2002></ref>
+
|0.42 <ref name="Lambeth_2002"></ref>
 
|mM
 
|mM
 
|}
 
|}

Revision as of 12:12, 1 April 2014

Glycogen phosphorylase (GP) is a dimeric enzyme that catalyses the reaction in which the terminal glucose residue from a glycogen chain is phosphorylated and cleaved from the chain, releasing it as Glc1P.

Chemical equation

 Glycogen_{n+1} + Pi \rightleftharpoons Glycogen_{n} + Glc1P

Rate equation

MWC model was used to formualte the rate law. [1]

\frac{V_{max} \times n \times \frac{[Pi]}{K_{r,Pi}} \left( 1 + \frac{[Pi]}{K_{r,Pi}} + \frac{[Glc1P]}{K_{r,Glc1P}}  \right)^{n-1} }{\left( 1 + \frac{[Pi]}{K_{r,Pi}} + \frac{[Glc1P]}{K_{r,Glc1P}} \right)^n + L_u \left( 1 + \frac{[Pi]}{K_{u,Pi}} + \frac{[Glc1P]}{K_{u,Glc1P}}  \right)^n \left(  \frac{1 + \frac{[Glc6P]}{K_{u,Glc6P}}}{1 + \frac{[AMP]}{K_{r,AMP}} + \frac{[Glc6P]}{K_{r,Glc6P}}} \right)^n  }  +  \frac{V_{max} \times n \times \frac{[Pi]}{K_{r,Pi}} \left( 1 + \frac{[Pi]}{K_{r,Pi}} + \frac{[Glc1P]}{K_{r,Glc1P}}  \right)^{n-1} }{\left( 1 + \frac{[Pi]}{K_{r,Pi}} + \frac{[Glc1P]}{K_{r,Glc1P}} \right)^n + L_t \left( 1 + \frac{[Pi]}{K_{t,Pi}} + \frac{[Glc1P]}{K_{t,Glc1P}}  \right)^n \left(  \frac{1 + \frac{[AMP]}{K_{t,AMP}} \frac{[Glc6P]}{K_{t,Glc6P}}}{1 + \frac{[AMP]}{K_{r,AMP}} + \frac{[Glc6P]}{K_{r,Glc6P}}} \right)^n \left( 1 + \frac{[ATP]}{K_{t,ATP}}  \right)^n }




An alternative rate equation without considering the allosteric regulation is given as [2]

 \frac{V_{maxf} \frac{Glycogen_{n+1} \times Pi}{K_{iGlyf} \times K_{Pi}} -\frac{V_{maxf} \times K_{Glyb} \times K_{iGlc1P}}{K_{iGlyf} \times K_{Pi} \times Keq} \times \frac{Glycogen_n \times Glc1P}{K_{Glyb} \times K_{iGlc1P}} }{1 + \frac{Glycogen_{n+1}}{K_{iGlyf}} + \frac{Pi}{K_{iPi}} + \frac{Glycogen_n}{K_{iGlyb}} + \frac{Glc1P}{K_{iGlc1P}} \frac{Glycogen_{n+1} \times Pi}{K_{Glyf} \times K_{iPi}} + \frac{Glycogen_n \times Glc1P}{K_{Glyb} \times K_{iGlc1P}} }

Parameter values

Parameter Value Units Organism Remarks
n 2 Dimensionless Recombinant, human muscle
V_{max} 50 \text{mM min}^{-1}
K_{r,Pi} 2.08 mM
K_{u,Pi} 4.32 mM
K_{t,Pi} 41.53 mM
K_{r, Glc1P} 0.67 mM
K_{u, Glc1P} 82.02 mM
K_{t, Glc1P} 27.92 mM
K_{r, AMP}  3.36 \times 10^{-3} mM
K_{t, AMP} 0.53 mM
K_{t, ATP} 3.9 mM
K_{r, Glc6P} 7.42 mM
K_{u, Glc6P} 0.56 mM
K_{t, Glc6P} 0.27 mM
L_{u} 5.93 Dimensionless
L_{t} 34741 Dimensionless

The parameter for the alternative equation are

Parameter Value Units Organism Remarks
V_{maxf} 50 [1] \text{mM min}^{-1} Rabbit
K_{iGlyf} 15[2] mM
K_{Pi} 4 [2] mM
K_{Glyb} 0.15 [2] mM
K_{iGlc1P} 10.1 [2] mM
K_{iPi} 4.6 [2] mM
K_{iGlyb} 4.4 [2] mM
K_{Glyf} 1.7 [2] mM
Keq 0.42 [2] mM

References

  1. 1.0 1.1 Palm, D.C. (2013). The regulatory design of glycogen metabolism in mammalian skeletal muscle (Ph.D.). University of Stellenbosch
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Lambeth M.J. & Kushmerick M.J. (2002). A computational model for glycogenolysis in skeletal muscle. Ann Biomed Eng 30, 808–827