Difference between revisions of "Glycogen phosphorylase"

From ISMOC
Jump to: navigation, search
(Rate equation)
(Parameter values)
Line 98: Line 98:
 
! Remarks
 
! Remarks
 
|-
 
|-
|<math>V_{max}</math>
+
|<math>V_{maxf}</math>
 
|50
 
|50
 
|<math>\text{mM min}^{-1}</math>
 
|<math>\text{mM min}^{-1}</math>
Line 104: Line 104:
 
|rowspan="9"|
 
|rowspan="9"|
 
|-
 
|-
|<math>Ka</math>
+
|<math>K_{iGlyf}</math>
|4
+
|15
 
|mM
 
|mM
 
|-
 
|-
|<math>Kb</math>
+
|<math>K_{Pi}</math>
|1.7
+
|4
 
|mM
 
|mM
 
|-
 
|-
|<math>Kp</math>
+
|<math>K_{Glyb}</math>
|2.7
+
|0.15
 
|mM
 
|mM
 
|-
 
|-
|<math>Kq</math>
+
|<math>K_{iGlc1P}</math>
|0.15
+
|10.1
 
|mM
 
|mM
 
|-
 
|-
|<math>Ki_1</math>
+
|<math>K_{iPi}</math>
|2
+
|4.6
 
|mM
 
|mM
 
|-
 
|-
|<math>Ki_2</math>
+
|<math>K_{iGlyb}</math>
|4.7
+
|4.4
 
|mM
 
|mM
 
|-
 
|-
|<math>Ki_3</math>
+
|<math>K_{Glyf}</math>
|10.1
+
|1.7
 
|mM
 
|mM
 
|-
 
|-

Revision as of 12:03, 1 April 2014

Glycogen phosphorylase (GP) is a dimeric enzyme that catalyses the reaction in which the terminal glucose residue from a glycogen chain is phosphorylated and cleaved from the chain, releasing it as Glc1P.

Chemical equation

 Glycogen_{n+1} + Pi \rightleftharpoons Glycogen_{n} + Glc1P

Rate equation

MWC model was used to formualte the rate law. [1]

\frac{V_{max} \times n \times \frac{[Pi]}{K_{r,Pi}} \left( 1 + \frac{[Pi]}{K_{r,Pi}} + \frac{[Glc1P]}{K_{r,Glc1P}}  \right)^{n-1} }{\left( 1 + \frac{[Pi]}{K_{r,Pi}} + \frac{[Glc1P]}{K_{r,Glc1P}} \right)^n + L_u \left( 1 + \frac{[Pi]}{K_{u,Pi}} + \frac{[Glc1P]}{K_{u,Glc1P}}  \right)^n \left(  \frac{1 + \frac{[Glc6P]}{K_{u,Glc6P}}}{1 + \frac{[AMP]}{K_{r,AMP}} + \frac{[Glc6P]}{K_{r,Glc6P}}} \right)^n  }  +  \frac{V_{max} \times n \times \frac{[Pi]}{K_{r,Pi}} \left( 1 + \frac{[Pi]}{K_{r,Pi}} + \frac{[Glc1P]}{K_{r,Glc1P}}  \right)^{n-1} }{\left( 1 + \frac{[Pi]}{K_{r,Pi}} + \frac{[Glc1P]}{K_{r,Glc1P}} \right)^n + L_t \left( 1 + \frac{[Pi]}{K_{t,Pi}} + \frac{[Glc1P]}{K_{t,Glc1P}}  \right)^n \left(  \frac{1 + \frac{[AMP]}{K_{t,AMP}} \frac{[Glc6P]}{K_{t,Glc6P}}}{1 + \frac{[AMP]}{K_{r,AMP}} + \frac{[Glc6P]}{K_{r,Glc6P}}} \right)^n \left( 1 + \frac{[ATP]}{K_{t,ATP}}  \right)^n }




An alternative rate equation without considering the allosteric regulation is given as [2]

 \frac{V_{maxf} \frac{Glycogen_{n+1} \times Pi}{K_{iGlyf} \times K_{Pi}} -\frac{V_{maxf} \times K_{Glyb} \times K_{iGlc1P}}{K_{iGlyf} \times K_{Pi} \times Keq} \times \frac{Glycogen_n \times Glc1P}{K_{Glyb} \times K_{iGlc1P}} }{1 + \frac{Glycogen_{n+1}}{K_{iGlyf}} + \frac{Pi}{K_{iPi}} + \frac{Glycogen_n}{K_{iGlyb}} + \frac{Glc1P}{K_{iGlc1P}} \frac{Glycogen_{n+1} \times Pi}{K_{Glyf} \times K_{iPi}} + \frac{Glycogen_n \times Glc1P}{K_{Glyb} \times K_{iGlc1P}} }

Parameter values

Parameter Value Units Organism Remarks
n 2 Dimensionless Recombinant, human muscle
V_{max} 50 \text{mM min}^{-1}
K_{r,Pi} 2.08 mM
K_{u,Pi} 4.32 mM
K_{t,Pi} 41.53 mM
K_{r, Glc1P} 0.67 mM
K_{u, Glc1P} 82.02 mM
K_{t, Glc1P} 27.92 mM
K_{r, AMP}  3.36 \times 10^{-3} mM
K_{t, AMP} 0.53 mM
K_{t, ATP} 3.9 mM
K_{r, Glc6P} 7.42 mM
K_{u, Glc6P} 0.56 mM
K_{t, Glc6P} 0.27 mM
L_{u} 5.93 Dimensionless
L_{t} 34741 Dimensionless

The parameter for the alternative equation are

Parameter Value Units Organism Remarks
V_{maxf} 50 \text{mM min}^{-1} Rabbit
K_{iGlyf} 15 mM
K_{Pi} 4 mM
K_{Glyb} 0.15 mM
K_{iGlc1P} 10.1 mM
K_{iPi} 4.6 mM
K_{iGlyb} 4.4 mM
K_{Glyf} 1.7 mM
Keq 0.42 mM

References

  1. Palm, D.C. (2013). The regulatory design of glycogen metabolism in mammalian skeletal muscle (Ph.D.). University of Stellenbosch
  2. Lambeth M.J. & Kushmerick M.J. (2002). A computational model for glycogenolysis in skeletal muscle. Ann Biomed Eng 30, 808–827