Difference between revisions of "Glycogen phosphorylase"

From ISMOC
Jump to: navigation, search
(Rate equation)
(Rate equation)
Line 12: Line 12:
 
An alternative rate equation without considering the allosteric regulation is given as <ref name="Lambeth_2002> Lambeth M.J. &  Kushmerick M.J. (2002). ''A computational model for glycogenolysis in skeletal muscle''. Ann Biomed Eng 30, 808–827</ref>
 
An alternative rate equation without considering the allosteric regulation is given as <ref name="Lambeth_2002> Lambeth M.J. &  Kushmerick M.J. (2002). ''A computational model for glycogenolysis in skeletal muscle''. Ann Biomed Eng 30, 808–827</ref>
  
<center><math> \frac{V_{maxf} \frac{Glycogen_{n+1} \times Pi}{K_{iGlyf} \times K_{Pi}} -\frac{V_{maxf} \times K_{Glyb} \times K_{iGlc1P}}{K_{iGlyf} \times K_{Pi} \times Keq} \frac{Glycogen_n \times Glc1P}{K_{Glyb} \times K_{iGlc1P}} }{1} </math></center>
+
<center><math> \frac{V_{maxf} \frac{Glycogen_{n+1} \times Pi}{K_{iGlyf} \times K_{Pi}} -\frac{V_{maxf} \times K_{Glyb} \times K_{iGlc1P}}{K_{iGlyf} \times K_{Pi} \times Keq} \times \frac{Glycogen_n \times Glc1P}{K_{Glyb} \times K_{iGlc1P}} }{1 + \frac{Glycogen_{n+1}}{K_{iGlyf}} + \frac{Pi}{K_{iPi}} + \frac{Glycogen_n}{K_{iGlyb}} + \frac{Glc1P}{K_{iGlc1P}} \frac{Glycogen_{n+1} \times Pi}{K_{Glyf} \times K_{iPi}} + \frac{Glycogen_n \times Glc1P}{K_{Glyb} \times K_{iGlc1P}} } </math></center>
  
 
==Parameter values==
 
==Parameter values==

Revision as of 11:51, 1 April 2014

Glycogen phosphorylase (GP) is a dimeric enzyme that catalyses the reaction in which the terminal glucose residue from a glycogen chain is phosphorylated and cleaved from the chain, releasing it as Glc1P.

Chemical equation

 Glycogen_{n+1} + Pi \rightleftharpoons Glycogen_{n} + Glc1P

Rate equation

MWC model was used to formualte the rate law. [1]

\frac{V_{max} \times n \times \frac{[Pi]}{K_{r,Pi}} \left( 1 + \frac{[Pi]}{K_{r,Pi}} + \frac{[Glc1P]}{K_{r,Glc1P}}  \right)^{n-1} }{\left( 1 + \frac{[Pi]}{K_{r,Pi}} + \frac{[Glc1P]}{K_{r,Glc1P}} \right)^n + L_u \left( 1 + \frac{[Pi]}{K_{u,Pi}} + \frac{[Glc1P]}{K_{u,Glc1P}}  \right)^n \left(  \frac{1 + \frac{[Glc6P]}{K_{u,Glc6P}}}{1 + \frac{[AMP]}{K_{r,AMP}} + \frac{[Glc6P]}{K_{r,Glc6P}}} \right)^n  }  +  \frac{V_{max} \times n \times \frac{[Pi]}{K_{r,Pi}} \left( 1 + \frac{[Pi]}{K_{r,Pi}} + \frac{[Glc1P]}{K_{r,Glc1P}}  \right)^{n-1} }{\left( 1 + \frac{[Pi]}{K_{r,Pi}} + \frac{[Glc1P]}{K_{r,Glc1P}} \right)^n + L_t \left( 1 + \frac{[Pi]}{K_{t,Pi}} + \frac{[Glc1P]}{K_{t,Glc1P}}  \right)^n \left(  \frac{1 + \frac{[AMP]}{K_{t,AMP}} \frac{[Glc6P]}{K_{t,Glc6P}}}{1 + \frac{[AMP]}{K_{r,AMP}} + \frac{[Glc6P]}{K_{r,Glc6P}}} \right)^n \left( 1 + \frac{[ATP]}{K_{t,ATP}}  \right)^n }




An alternative rate equation without considering the allosteric regulation is given as [2]

 \frac{V_{maxf} \frac{Glycogen_{n+1} \times Pi}{K_{iGlyf} \times K_{Pi}} -\frac{V_{maxf} \times K_{Glyb} \times K_{iGlc1P}}{K_{iGlyf} \times K_{Pi} \times Keq} \times \frac{Glycogen_n \times Glc1P}{K_{Glyb} \times K_{iGlc1P}} }{1 + \frac{Glycogen_{n+1}}{K_{iGlyf}} + \frac{Pi}{K_{iPi}} + \frac{Glycogen_n}{K_{iGlyb}} + \frac{Glc1P}{K_{iGlc1P}} \frac{Glycogen_{n+1} \times Pi}{K_{Glyf} \times K_{iPi}} + \frac{Glycogen_n \times Glc1P}{K_{Glyb} \times K_{iGlc1P}} }

Parameter values

Parameter Value Units Organism Remarks
n 2 Dimensionless Recombinant, human muscle
V_{max} 50 \text{mM min}^{-1}
K_{r,Pi} 2.08 mM
K_{u,Pi} 4.32 mM
K_{t,Pi} 41.53 mM
K_{r, Glc1P} 0.67 mM
K_{u, Glc1P} 82.02 mM
K_{t, Glc1P} 27.92 mM
K_{r, AMP}  3.36 \times 10^{-3} mM
K_{t, AMP} 0.53 mM
K_{t, ATP} 3.9 mM
K_{r, Glc6P} 7.42 mM
K_{u, Glc6P} 0.56 mM
K_{t, Glc6P} 0.27 mM
L_{u} 5.93 Dimensionless
L_{t} 34741 Dimensionless

The parameter for the alternative equation are

Parameter Value Units Organism Remarks
V_{max} 50 \text{mM min}^{-1} Rabbit
Failed to parse (Cannot store math image on filesystem.): Ka 4 mM
Failed to parse (Cannot store math image on filesystem.): Kb 1.7 mM
Failed to parse (Cannot store math image on filesystem.): Kp 2.7 mM
Failed to parse (Cannot store math image on filesystem.): Kq 0.15 mM
Failed to parse (Cannot store math image on filesystem.): Ki_1 2 mM
Failed to parse (Cannot store math image on filesystem.): Ki_2 4.7 mM
Failed to parse (Cannot store math image on filesystem.): Ki_3 10.1 mM
Keq 0.42 mM

References

  1. Palm, D.C. (2013). The regulatory design of glycogen metabolism in mammalian skeletal muscle (Ph.D.). University of Stellenbosch
  2. Lambeth M.J. & Kushmerick M.J. (2002). A computational model for glycogenolysis in skeletal muscle. Ann Biomed Eng 30, 808–827