Difference between revisions of "Metabolite concentrations"

From ISMOC
Jump to: navigation, search
Line 1: Line 1:
 +
==Initial Concentration==
 
Initial concentration of the metabolites are listed below
 
Initial concentration of the metabolites are listed below
  
Line 94: Line 95:
 
|Glycogen
 
|Glycogen
 
|112 <ref name="Lambeth_2002"></ref>
 
|112 <ref name="Lambeth_2002"></ref>
 +
|-
 +
|PHP
 +
|0.60 <ref name = "Smallbone_2013">Smallbone K, Stanford NJ (2013). ''Kinetic modeling of metabolic pathways: Application to serine biosynthesis''. In: Systems Metabolic Engineering, Humana Press. pp. 113–121</ref>
 +
|-
 +
|PSER
 +
|0.09 <ref name = "Smallbone_2013"></ref>
 +
|-
 +
|Serine
 +
|4.90 <ref name = "Smallbone_2013"></ref>
 
|}
 
|}
  

Revision as of 16:27, 27 March 2014

Initial Concentration

Initial concentration of the metabolites are listed below

Metabolites Initial concentrations
\text{Gucose}_{\text{out}} 5 mM (Fixed) [1]
\text{Gucose}_{\text{in}} 1 \times e^{-003} \text{mM} [2]
ATP 8.70 mM [2]
Glc-6-P 1.3 mM [2]
ADP 2.7 mM [2]
Fru-6-P 0.5 mM [2]
Fru-1,6-BP 0.38 mM [2]
DHAP 0.93 mM [2]
Gly3P 0.9 mM [2]
NAD 1.3 mM [2]
1,3BPG 1 \times e^{-003} \text{mM} [2]
NADH 5 \times e^{-002} \text{mM} [2]
3PG 1 \times e^{-003} \text{mM} [2]
2PG 1 \times e^{-003} \text{mM} [2]
PEP 0.32 mM [2]
Pyruvate 8.5 mM [2]
\text{Lactate}_{\text{out}} 33 mM [2] (Fixed)
Glycogen 135 mM [2] (Fixed)
Pi 4 mM [2] (Fixed)
AMP 0.4 mM [2]
6PG 0.39 mM [2] (Fixed)
Xy5P 1.6 \times e^{-002} \text{mM} [3] (Fixed)
Ery4P 1.6 \times e^{-002} \text{mM} [3] (Fixed)
CIT 1.7 [2] (Fixed)
F-2,6-BP 4.2 \times e^{-003} \text{mM} [2] (Fixed)
Glc-1-P 5.89 \times 10^{-2} \text{mM} [4]
UTP 0.13 [5]
PPi 1 \times 10^{-2} \text{mM} [6]
UDPG 4.3 \times 10^{-2} \text{mM} [7]
Glycogen 112 [4]
PHP 0.60 [8]
PSER 0.09 [8]
Serine 4.90 [8]



References

  1. Marín-Hernández A , Rodríguez-Enríquez S, Vital-González P A, et al. (2006). Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J., 273 , pp. 1975–1988(doi)
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011). Modeling cancer glycolysis. Biochim Biophys Acta, 1807:755–767 (doi)
  3. 3.0 3.1 Reitzer L J (1980). The pentose cycle. J. Biol. Chem., 255 , pp. 5616–5626
  4. 4.0 4.1 Lambeth MJ & Kushmerick MJ (2002). A computational model for glycogenolysis in skeletal muscle. Ann Biomed Eng 30, 808–827
  5. Keppler D, Rudiger J & Decker K (1970) Enzymatic determination of uracil nucleotides in tissues. Anal Biochem 38, 105–114.
  6. Palm, D.C. (2013). The regulatory design of glycogen metabolism in mammalian skeletal muscle (Ph.D.). University of Stellenbosch
  7. Albe KR, Butler MH & Wright BE (1990). Cellular concentrations of enzymes and their substrates. J Theor Biol 143, 163–195.
  8. 8.0 8.1 8.2 Smallbone K, Stanford NJ (2013). Kinetic modeling of metabolic pathways: Application to serine biosynthesis. In: Systems Metabolic Engineering, Humana Press. pp. 113–121