Difference between revisions of "Triosephosphate isomerase"

From ISMOC
Jump to: navigation, search
(Parameters with uncertainty)
(Parameters with uncertainty)
 
(15 intermediate revisions by the same user not shown)
Line 8: Line 8:
  
 
<center><math> v = \frac{ V_{mf}\frac{[DHAP]}{K_{DHAP}} - V_{mr}\frac{[Gly3P]}{K_{Gly3P}}  }{1 + \frac{[DHAP]}{K_{DHAP}} + \frac{[Gly3P]}{K_{Gly3P}} } </math></center>
 
<center><math> v = \frac{ V_{mf}\frac{[DHAP]}{K_{DHAP}} - V_{mr}\frac{[Gly3P]}{K_{Gly3P}}  }{1 + \frac{[DHAP]}{K_{DHAP}} + \frac{[Gly3P]}{K_{Gly3P}} } </math></center>
 +
 +
Modified rate law considering thermodynamic constant is
 +
<center><math> v = \frac{ V_{mf}\frac{[DHAP]}{K_{DHAP}}\left(1 - \frac{[Gly3P]}{K_{eq}[DHAP]} \right)}{1 + \frac{[DHAP]}{K_{DHAP}} + \frac{[Gly3P]}{K_{Gly3P}} } </math></center>
  
 
== Paramters ==
 
== Paramters ==
Line 37: Line 40:
  
 
==Parameters with uncertainty==
 
==Parameters with uncertainty==
* The activity is measured in Activity in the reverse reaction in Hernandez (2006) ''et. al.'' <math>V_{mf}</math> is sampled based on Haldane equation <math>K_{eq} = \frac{V_{forward}*K_{product}}{V_{reverse}*K_{substrate}}</math> using the value <math>K_{eq} = 20.9 \pm 3.1</math>, <math>Km_{Gly3P}</math> and <math>Km_{DHAP}</math>. '''Alternatively''' the reported fixed point value can be considered with the standard deviation calculated based on the same ratio of <math>V_{mf}</math> which is <math>\approx 31%</math>. This gives the value <math>V_{mf}=0.063 \pm 0.028 </math>
+
* The activity is measured in Activity in the reverse reaction in Hernandez (2006) ''et. al.'' <math>V_{mf}</math> is sampled based on Haldane equation <math>K_{eq} = \frac{V_{forward}*K_{product}}{V_{reverse}*K_{substrate}}</math> using the value <math>K_{eq} = 0.047</math>, <math>Km_{Gly3P}</math> and <math>Km_{DHAP}</math>. <br>
 +
'''Alternative-1''' the reported fixed point value can be considered with the standard deviation calculated based on the same ratio of <math>V_{mf}</math> which is <math>\approx 31%</math>. This gives the value <math>V_{mf}=6.19 \pm 1.91 </math><math>U\cdot(\text{mg protein})^{-1}</math><br>
 +
'''Alternative-2''' Calculating <math>V_{mf}</math> from <math>V_{mr}</math> based on Haldane equation which gives the value of 2.911 and with the same percent of erro Std. Dev. is 0.90.
  
 
{|class="wikitable"
 
{|class="wikitable"
Line 47: Line 52:
 
|-
 
|-
 
|<math>V_{mf}</math>
 
|<math>V_{mf}</math>
| Sampled based on the Haldane equation.
+
| Sampled based on the Haldane equation.<br> '''Alternative:''' <math>6.19 \pm 1.91</math> or <math>2.911 \pm 0.90</math> conversion gives <math>402 \pm 124.62</math>
|<math> mM \times min^{-1} </math>  
+
|<math>U\cdot(\text{mg protein})^{-1}</math> <br> <math> mM \times min^{-1} </math>  
 
|
 
|
 
|rowspan="5"|
 
|rowspan="5"|
Line 67: Line 72:
 
|-
 
|-
 
|<math>K_{eq}</math>
 
|<math>K_{eq}</math>
|<math>20.9 \pm 3.1 (4)</math><ref name="synder_1975"></ref>
+
|<math>0.047 \pm 0.00697 (4)</math><ref name="synder_1975"></ref>
 
|mM
 
|mM
|
+
|<math>K_{eq}(reverse) = 20.9, and so K_{eq}(forward) = \frac{1}{20.9} = 0.047 </math>
 +
|}
 +
 
 +
===Equilibrium constant===
 +
{| class="wikitable"
 +
! Equilibrium constant
 +
! Conditions
 +
! Source
 +
|-
 +
| 0.045
 +
| pH=8, T=25°C
 +
| Bergmeyer ''Methods of enzymatic analysis'' page 515<ref name="bermeyer74">Bergmeyer H.U. (1974) ''Methods of enzymatic analysis'', Publisher: Verlag Chemie (vol 1)</ref>
 +
|-
 +
| 0.041
 +
| pH=7, T=25°C
 +
| Voet et al.<ref name="voet">Voet, D., Voet., J.G. and Pratt, C. W. (1999) Fundamentals of biochemistry, Wiley</ref> from Newshole et al. (1973) <ref name="newshole73">Newshole, E.A. and Stuart, C. (1973) Regulation in Metabolism, Wiley</ref>p 97:<br/>
 +
<math>\Delta G' = 7.9\ kJ.mol^{-1}</math>, <math>Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{-7900}{8.31*298.15}) \approx 0.041</math>
 +
|-
 +
| 0.048
 +
| pH=7, T=25°C
 +
| Lehninger, (1975)<ref name="lehninger75">Lehninger, A.L. (1975) Biochemistry (2nd edn), Worth</ref> p 408:<br/>
 +
<math>\Delta G' = 7.5\ kJ.mol^{-1}</math>, <math>Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{-7500}{8.31*298.15}) \approx 0.048</math>
 +
|-
 +
| 0.0475
 +
| pH=7, T=25°C
 +
| Lehninger, (1975)<ref name="lehninger75">Lehninger, A.L. (1975) Biochemistry (2nd edn), Worth</ref> p 396.
 
|}
 
|}
 +
 +
*Taking average of all those values give <math>0.0457 \pm 0.002863</math>
  
 
==References==
 
==References==
 
<references/>
 
<references/>

Latest revision as of 14:23, 28 October 2014

This enzyme rapidly inter-converts the molecules Dihydroxyacetone phosphate (DHAP) and Glyceraldehyde 3-phosphate (Gly3P). Gly3P is removed as soon as it is formed to be used in the next step of glycolysis.

Chemical equation

 DHAP \rightleftharpoons  Gly3P

Rate equation

Reversible Michaelis-Menten is used [1]

 v = \frac{ V_{mf}\frac{[DHAP]}{K_{DHAP}} - V_{mr}\frac{[Gly3P]}{K_{Gly3P}}  }{1 + \frac{[DHAP]}{K_{DHAP}} + \frac{[Gly3P]}{K_{Gly3P}} }

Modified rate law considering thermodynamic constant is

 v = \frac{ V_{mf}\frac{[DHAP]}{K_{DHAP}}\left(1 - \frac{[Gly3P]}{K_{eq}[DHAP]} \right)}{1 + \frac{[DHAP]}{K_{DHAP}} + \frac{[Gly3P]}{K_{Gly3P}} }

Paramters

Parameter Value Units Organism Remarks
V_{mf} 5 [1]  mM \times min^{-1} Hela cell line
V_{mr} 42[2]  mM \times min^{-1}
Km_{Gly3P} 0.51[1] mM
Km_{DHAP} 1.6[1] mM

Parameters with uncertainty

  • The activity is measured in Activity in the reverse reaction in Hernandez (2006) et. al. V_{mf} is sampled based on Haldane equation K_{eq} = \frac{V_{forward}*K_{product}}{V_{reverse}*K_{substrate}} using the value K_{eq} = 0.047, Km_{Gly3P} and Km_{DHAP}.

Alternative-1 the reported fixed point value can be considered with the standard deviation calculated based on the same ratio of V_{mf} which is \approx 31%. This gives the value V_{mf}=6.19 \pm 1.91 U\cdot(\text{mg protein})^{-1}
Alternative-2 Calculating V_{mf} from V_{mr} based on Haldane equation which gives the value of 2.911 and with the same percent of erro Std. Dev. is 0.90.

Parameter Value Units Organism Remarks
V_{mf} Sampled based on the Haldane equation.
Alternative: 6.19 \pm 1.91 or 2.911 \pm 0.90 conversion gives 402 \pm 124.62
U\cdot(\text{mg protein})^{-1}
 mM \times min^{-1}
V_{mr} 42 \pm 13 (3)[2]  mM \times min^{-1}
Km_{Gly3P} 0.40 \pm 0.03 (4)[3] mM Human liver
Km_{DHAP} 0.59 \pm 0.01 (4)[3] mM Human liver
K_{eq} 0.047 \pm 0.00697 (4)[3] mM K_{eq}(reverse) = 20.9, and so K_{eq}(forward) = \frac{1}{20.9} = 0.047

Equilibrium constant

Equilibrium constant Conditions Source
0.045 pH=8, T=25°C Bergmeyer Methods of enzymatic analysis page 515[4]
0.041 pH=7, T=25°C Voet et al.[5] from Newshole et al. (1973) [6]p 97:

\Delta G' = 7.9\ kJ.mol^{-1}, Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{-7900}{8.31*298.15}) \approx 0.041

0.048 pH=7, T=25°C Lehninger, (1975)[7] p 408:

\Delta G' = 7.5\ kJ.mol^{-1}, Keq = exp(-\frac{\Delta G'}{RT}) = exp(\frac{-7500}{8.31*298.15}) \approx 0.048

0.0475 pH=7, T=25°C Lehninger, (1975)[7] p 396.
  • Taking average of all those values give 0.0457 \pm 0.002863

References

  1. 1.0 1.1 1.2 1.3 Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767 (doi) Cite error: Invalid <ref> tag; name "Hernandez2011" defined multiple times with different content
  2. 2.0 2.1 Marín-Hernández A , Rodríguez-Enríquez S, Vital-González P A, et al. (2006). Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J., 273 , pp. 1975–1988(doi)
  3. 3.0 3.1 3.2 Snyder, R.; Lee, E.W. (1975), Triosephosphate isomerase from human and horse liver,Methods Enzymol. 41B, 430-434
  4. Bergmeyer H.U. (1974) Methods of enzymatic analysis, Publisher: Verlag Chemie (vol 1)
  5. Voet, D., Voet., J.G. and Pratt, C. W. (1999) Fundamentals of biochemistry, Wiley
  6. Newshole, E.A. and Stuart, C. (1973) Regulation in Metabolism, Wiley
  7. 7.0 7.1 Lehninger, A.L. (1975) Biochemistry (2nd edn), Worth