Difference between revisions of "Pyruvate kinase"

From ISMOC
Jump to: navigation, search
Line 5: Line 5:
  
 
==Rate equation==
 
==Rate equation==
The rate equation is represented by the allosteric regualation model of [http://en.wikipedia.org/wiki/MWC_model Monod, Wyman and Changeux] (MWS). [http://en.wikipedia.org/wiki/Fructose_1,6-bisphosphatase Fru1,6BP] and [http://en.wikipedia.org/wiki/Serine Serine] are activators and [http://en.wikipedia.org/wiki/Adenosine_triphosphate ATP] is inhibiting. Simple [http://en.wikipedia.org/wiki/Michaelis%E2%80%93Menten_kinetics Micahelis-Menten kinetics] (Briggs Haldane) is used for ADP and reverse reaction
+
The rate equation is represented by the allosteric regualation model of [http://en.wikipedia.org/wiki/MWC_model Monod, Wyman and Changeux] (MWS). [http://en.wikipedia.org/wiki/Fructose_1,6-bisphosphatase Fru1,6BP] and [http://en.wikipedia.org/wiki/Serine Serine] are activators and [http://en.wikipedia.org/wiki/Adenosine_triphosphate ATP] is inhibiting. Simple [http://en.wikipedia.org/wiki/Michaelis%E2%80%93Menten_kinetics Micahelis-Menten kinetics] (Briggs Haldane) is used for ADP and reverse reaction <ref name="MWC_1965"> Monod J, Wyman J, Changeux J-P (1965) On the Nature of Allosteric Transitions: A Plausible Model . Journal of Molecular Biology 12:88–118 ([http://dx.doi.org/10.1016/S0022-2836(65)80285-6 doi])  </ref>
  
 
<center><math>V_m \left( \left(\frac{\frac{[ADP]}{K_{ADP}}}{1+\frac{[ADP]}{K_{ADP}}}\right) \left( \frac{\frac{[PEP]}{K_{PEP}}\left( 1+\frac{[PEP]}{K_{PEP}}  \right)^3 }{ \frac{L \left( 1 + \frac{[ATP]}{Ki_{ADP}} \right)^4 }{ \left( 1 + \frac{[SER]}{Ka_{SER}} \right)^4 \left(  1 + \frac{F1,6BP}{Ka_{F1,6BP}} \right)^4  } + \left( 1 + \frac{[PEP]}{K_{PEP}} \right)^4} \right) - \left( \frac{\frac{[ATP][PYR]}{K_{ATP}K_{PYR}K_{eq}}}{\frac{[ATP]}{K_{ATP}} + \frac{[PYR]}{K_{PYR}} + \frac{[ATP][PYR]}{K_{ATP}K_{PYR} } + 1} \right)  \right)</math></center>
 
<center><math>V_m \left( \left(\frac{\frac{[ADP]}{K_{ADP}}}{1+\frac{[ADP]}{K_{ADP}}}\right) \left( \frac{\frac{[PEP]}{K_{PEP}}\left( 1+\frac{[PEP]}{K_{PEP}}  \right)^3 }{ \frac{L \left( 1 + \frac{[ATP]}{Ki_{ADP}} \right)^4 }{ \left( 1 + \frac{[SER]}{Ka_{SER}} \right)^4 \left(  1 + \frac{F1,6BP}{Ka_{F1,6BP}} \right)^4  } + \left( 1 + \frac{[PEP]}{K_{PEP}} \right)^4} \right) - \left( \frac{\frac{[ATP][PYR]}{K_{ATP}K_{PYR}K_{eq}}}{\frac{[ATP]}{K_{ATP}} + \frac{[PYR]}{K_{PYR}} + \frac{[ATP][PYR]}{K_{ATP}K_{PYR} } + 1} \right)  \right)</math></center>
 +
 +
==Parameter values==
 +
 +
==Alternative parameter values==
 +
 +
==References==
 +
<references/>

Revision as of 18:30, 27 February 2014

Pyruvate kinase is a transferase enzyme that catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to ADP, yielding one molecule of pyruvate and one molecule of ATP.

Chemical reaction

 PEP + ADP \rightleftharpoons Pyrvate + ATP

Rate equation

The rate equation is represented by the allosteric regualation model of Monod, Wyman and Changeux (MWS). Fru1,6BP and Serine are activators and ATP is inhibiting. Simple Micahelis-Menten kinetics (Briggs Haldane) is used for ADP and reverse reaction [1]

V_m \left( \left(\frac{\frac{[ADP]}{K_{ADP}}}{1+\frac{[ADP]}{K_{ADP}}}\right) \left( \frac{\frac{[PEP]}{K_{PEP}}\left( 1+\frac{[PEP]}{K_{PEP}}  \right)^3 }{ \frac{L \left( 1 + \frac{[ATP]}{Ki_{ADP}} \right)^4 }{ \left( 1 + \frac{[SER]}{Ka_{SER}} \right)^4 \left(  1 + \frac{F1,6BP}{Ka_{F1,6BP}} \right)^4  } + \left( 1 + \frac{[PEP]}{K_{PEP}} \right)^4} \right) - \left( \frac{\frac{[ATP][PYR]}{K_{ATP}K_{PYR}K_{eq}}}{\frac{[ATP]}{K_{ATP}} + \frac{[PYR]}{K_{PYR}} + \frac{[ATP][PYR]}{K_{ATP}K_{PYR} } + 1} \right)  \right)

Parameter values

Alternative parameter values

References

  1. Monod J, Wyman J, Changeux J-P (1965) On the Nature of Allosteric Transitions: A Plausible Model . Journal of Molecular Biology 12:88–118 (doi)