Difference between revisions of "UDPG-pyrophosphorylase"

From ISMOC
Jump to: navigation, search
(Parameters with uncertainty)
 
(22 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
[[Category:Uncertainty]]
 
This enzyme converts UTP and G1P to UDP-glucose (UDPG) and pyrophosphate (PPi)
 
This enzyme converts UTP and G1P to UDP-glucose (UDPG) and pyrophosphate (PPi)
  
 
==Chemical equation==
 
==Chemical equation==
<center><math> UTP + Glc1P \rightarrow UDPG + PPi</math></center>
+
<center><math> UTP + Glc1P \leftrightarrow UDPG + PPi</math></center>
  
 
==Rate equation==
 
==Rate equation==
Reversible Bi substrate Michaelis-Menten equation with random binding order is used
+
Reversible Bi substrate Michaelis-Menten equation with random binding order is used <ref name="Palm_thesis_2013> Palm, D.C. (2013). ''The regulatory design of glycogen metabolism in mammalian skeletal muscle'' (Ph.D.). University of Stellenbosch</ref>
<center><math> \frac{ \frac{V_{max}}{K_{UTP}K_{Glc1P}} \left( [UTP][Glc1P] - \frac{[UDPG][PPi]}{K_{eq}} \right)  }{ \left( 1 + \frac{[UTP]}{K_{UTP}} + \frac{[PPi]}{K_{PP_{i}}} \right) \left( 1 + \frac{[UDPG]}{K_{UDPG}} + \frac{[Glc1P]}{K_{Glc1P}} \right)  } </math></center>
+
<center><math> \frac{ \frac{V_{max}}{K_{UTP}K_{Glc1P}} \left( [UTP][Glc1P] - \frac{[UDPG][PPi]}{K_{eq}} \right)  }{ \left( 1 + \frac{[UTP]}{K_{UTP}} + \frac{[PPi]}{K_{PPi}} \right) \left( 1 + \frac{[UDPG]}{K_{UDPG}} + \frac{[Glc1P]}{K_{Glc1P}} \right)  } </math></center>
  
 
==Parameter values==
 
==Parameter values==
 +
{|class="wikitable"
 +
! Parameter
 +
! Value
 +
! Units
 +
! Organism
 +
! Remarks
 +
|-
 +
|<math>V_{max}</math>
 +
|200 <ref name = "villar_1960"> Villar-Palasi C & Larner J (1960). ''Levels of activity of the enzymes of the glycogen cycle in rat tissues''. Arch Biochem Biophys 86, 270–273.</ref>
 +
|<math>min^{-1}</math>
 +
|rowspan="6"|Recombinant, human muscle
 +
|rowspan="6"|
 +
|-
 +
|<math>K_{Glc1P}</math>
 +
|0.4 <ref name="duggleby_1996"> Duggleby RG, Chao YC, Huang JG, Peng HL & Chang HY (1996). ''Sequence differences between human muscle and liver cDNAs for UDPglucose pyrophosphorylase and kinetic properties of the recombinant enzymes expressed in Escherichia coli''. Eur J Biochem 235, 173–179. </ref>
 +
|mM
 +
|-
 +
|<math>K_{UTP}</math>
 +
|0.92 <ref name="duggleby_1996"></ref>
 +
|mM
 +
|-
 +
|<math>K_{UDPG}</math>
 +
|<math> 6.3 \times 10^{-2} </math> <ref name="duggleby_1996"></ref>
 +
|mM
 +
|-
 +
|<math>K_{ppi}</math>
 +
|<math>0.38</math><ref name="duggleby_1996"></ref>
 +
|mM
 +
|-
 +
|<math>K_{eq}</math>
 +
|<math>0.24</math><ref name="Bergamini_1983">Bergamini C, Signorini M, Ferrari C & Dallocchio F (1983), ''Non-Michaelian kinetics of rabbit muscle uridine diphosphoglucose pyrophosphorylase'', Arch Biochem Biophys 227, 397–405</ref>
 +
|Dimensionless
 +
|}
 +
 +
 +
==Parameters with uncertainty==
 +
* The value of <math>V_{max}</math> is reported to be <math>9.6 %</math> of <math>V_{max, PGLM}</math>. The Std. Dev. for <math>V_{max, PGLM}</math> was considered to be <math>10.5%</math> of its mean value. Same error percentage is considered for <math>V_{max}</math>.
 +
 +
{|class="wikitable"
 +
! Parameter
 +
! Value
 +
! Units
 +
! Organism
 +
! Remarks
 +
|-
 +
|<math>V_{max}</math>
 +
|<math>200 \pm 21</math> <ref name = "villar_1960"> Villar-Palasi C & Larner J (1960). ''Levels of activity of the enzymes of the glycogen cycle in rat tissues''. Arch Biochem Biophys 86, 270–273.</ref>
 +
|<math>mM min^{-1}</math>
 +
|rowspan="6"|Recombinant, human muscle
 +
|rowspan="6"|
 +
|-
 +
|<math>K_{Glc1P}</math>
 +
|<math> 0.4 \pm 0.051 </math> <ref name="duggleby_1996"> Duggleby RG, Chao YC, Huang JG, Peng HL & Chang HY (1996). ''Sequence differences between human muscle and liver cDNAs for UDPglucose pyrophosphorylase and kinetic properties of the recombinant enzymes expressed in Escherichia coli''. Eur J Biochem 235, 173–179. </ref>
 +
|mM
 +
|-
 +
|<math>K_{UTP}</math>
 +
|<math>0.97 \pm 0.08</math> <ref name="duggleby_1996"></ref>
 +
|mM
 +
|-
 +
|<math>K_{UDPG}</math>
 +
|<math> 0.063 \pm 0.006 </math> <ref name="duggleby_1996"></ref>
 +
|mM
 +
|-
 +
|<math>K_{ppi}</math>
 +
|<math>0.38 \pm 0.036</math><ref name="duggleby_1996"></ref>
 +
|mM
 +
|-
 +
|<math>K_{eq}</math>
 +
|<math>0.20 \pm 0.08</math>
 +
|Dimensionless
 +
|}
 +
 +
=== Equilibrium constant ===
 +
{| class="wikitable"
 +
! Equilibrium constant
 +
! Conditions
 +
! Source
 +
|-
 +
| <math>0.20 \pm 0.08</math>
 +
| pH=7 and 7.9, T=25°C, 10mM Mg2+
 +
| NIST database "Thermodynamics of Enzyme-Catalyzed Reactions" entry [[http://xpdb.nist.gov/enzyme_thermodynamics/enzyme_data1.pl?T1=58TUR/TUR_684]] from Atkinson et al. (1958) <ref name="Turner">Turner, D.H.; Turner, J.F.; Biochem. J.; 69, 448 (1958)</ref> reported 4 values for Keq; 0.119, 0.286, 0.139, 0.263. Taking mean and std. for these values give <math>K_{eq} = 0.20 \pm 0.08 </math>(n=4).
 +
|}
  
 
==References==
 
==References==
 +
<references/>

Latest revision as of 14:42, 22 September 2014

This enzyme converts UTP and G1P to UDP-glucose (UDPG) and pyrophosphate (PPi)

Chemical equation

 UTP + Glc1P \leftrightarrow UDPG + PPi

Rate equation

Reversible Bi substrate Michaelis-Menten equation with random binding order is used [1]

 \frac{ \frac{V_{max}}{K_{UTP}K_{Glc1P}} \left( [UTP][Glc1P] - \frac{[UDPG][PPi]}{K_{eq}} \right)  }{ \left( 1 + \frac{[UTP]}{K_{UTP}} + \frac{[PPi]}{K_{PPi}} \right) \left( 1 + \frac{[UDPG]}{K_{UDPG}} + \frac{[Glc1P]}{K_{Glc1P}} \right)  }

Parameter values

Parameter Value Units Organism Remarks
V_{max} 200 [2] min^{-1} Recombinant, human muscle
K_{Glc1P} 0.4 [3] mM
K_{UTP} 0.92 [3] mM
K_{UDPG}  6.3 \times 10^{-2} [3] mM
K_{ppi} 0.38[3] mM
K_{eq} 0.24[4] Dimensionless


Parameters with uncertainty

  • The value of V_{max} is reported to be 9.6 % of V_{max, PGLM}. The Std. Dev. for V_{max, PGLM} was considered to be 10.5% of its mean value. Same error percentage is considered for V_{max}.
Parameter Value Units Organism Remarks
V_{max} 200 \pm 21 [2] mM min^{-1} Recombinant, human muscle
K_{Glc1P}  0.4 \pm 0.051 [3] mM
K_{UTP} 0.97 \pm 0.08 [3] mM
K_{UDPG}  0.063 \pm 0.006 [3] mM
K_{ppi} 0.38 \pm 0.036[3] mM
K_{eq} 0.20 \pm 0.08 Dimensionless

Equilibrium constant

Equilibrium constant Conditions Source
0.20 \pm 0.08 pH=7 and 7.9, T=25°C, 10mM Mg2+ NIST database "Thermodynamics of Enzyme-Catalyzed Reactions" entry [[1]] from Atkinson et al. (1958) [5] reported 4 values for Keq; 0.119, 0.286, 0.139, 0.263. Taking mean and std. for these values give K_{eq} = 0.20 \pm 0.08 (n=4).

References

  1. Palm, D.C. (2013). The regulatory design of glycogen metabolism in mammalian skeletal muscle (Ph.D.). University of Stellenbosch
  2. 2.0 2.1 Villar-Palasi C & Larner J (1960). Levels of activity of the enzymes of the glycogen cycle in rat tissues. Arch Biochem Biophys 86, 270–273.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Duggleby RG, Chao YC, Huang JG, Peng HL & Chang HY (1996). Sequence differences between human muscle and liver cDNAs for UDPglucose pyrophosphorylase and kinetic properties of the recombinant enzymes expressed in Escherichia coli. Eur J Biochem 235, 173–179.
  4. Bergamini C, Signorini M, Ferrari C & Dallocchio F (1983), Non-Michaelian kinetics of rabbit muscle uridine diphosphoglucose pyrophosphorylase, Arch Biochem Biophys 227, 397–405
  5. Turner, D.H.; Turner, J.F.; Biochem. J.; 69, 448 (1958)