Double-bond reductase (DBR)

From ISMOC
(Redirected from Pulegone Reductase (PGR))
Jump to: navigation, search

You can go back to main page of the kinetic model here.


Reaction catalysed

DBR reaction diagram v2.png

Enzyme and Metabolite Background Information

Long metabolite names are abbreviated in the model for clarity and standard identification purposes.

Compound Abbreviation Chemical Formula Molar mass (g/mol) ChEBI ChEMBL PubChem BRENDA PlantCyc
Double-bond reductase DBR 37914 Da 1.3.1.81
pulegone C10H16O 136.24
menthone
NADPH C21H30N7O17P3 745.42116 16474
NADP+ C21H29N7O17P3 744.41322 18009
isomenthone

Equation Rate

DBR is modelled using two equations that describes: 1) Pulegone to Menthone and 2) Pulegone to Isomenthone. The predominant product for DBR is menthone where the ratio of menthone to isomenthone production have been reported as 40:33 [1], 55:45 [2] and 70:30 [3]. To model the variability of the product yield for DBR, variability factors which are calculated from the average ratio is included in the equations.

[1]

Reaction 1: Conversion of pulegone to menthone


V_\mathrm{DBR} =  Kcat_\mathrm{forward} * X1*[DBR] * \cfrac {\left ( \cfrac{[pulegone]}{Km_\mathrm{pulegone}} * \cfrac {[NADPH]}{Km_\mathrm{NADPH}} \right ) * \left ( 1 - \cfrac {[menthone]*[NADP]}{[pulegone]*[NADPH]*K_\mathrm{eq}} \right )} 
{ \left (1 + \cfrac {[Pulegone]}{Km_\mathrm{Pulegone}} + \cfrac {[NADP]}{Km_\mathrm{NADP}} \right )  + \left ( 1+ \cfrac {[NADPH]}{Km_\mathrm{NADPH}}  + \cfrac {[menthone]}{Km_\mathrm{menthone}} \right ) }

Reaction 2: Conversion of pulegone to isomenthone


V_\mathrm{DBR} =  Kcat_\mathrm{forward} *X2* [DBR] * \cfrac {\left ( \cfrac{[pulegone]}{Km_\mathrm{pulegone}} * \cfrac {[NADPH]}{Km_\mathrm{NADPH}} \right ) * \left ( 1 - \cfrac {[isomenthone]*[NADP]}{[pulegone]*[NADPH]*K_\mathrm{eq}} \right )} 
{ \left (1 + \cfrac {[Pulegone]}{Km_\mathrm{Pulegone}} + \cfrac {[NADP]}{Km_\mathrm{NADP}} \right )  + \left ( 1+ \cfrac {[NADPH]}{Km_\mathrm{NADPH}}  + \cfrac {[isomenthone]}{Km_\mathrm{isomenthone}} \right ) }
Parameter Description Units
VPGR Reaction rate for Limonene-3-hydroxylase μM/min
Kcatforward Catalytic constant in the forward direction s-1
Kmpulegone Michaelis-Menten constant for pulegone μM
Kmmenthone Michaelis-Menten constant for menthone μM
Kmisomenthone Michaelis-Menten constant for isomenthone μM
KmNADPH Michaelis-Menten constant for NADPH μM
KmNADP Michaelis-Menten constant for NADP+ μM
Keq Equilibrium constant
X1 , X2 Variability factors
[PGR] enzyme concentration μM
[pulegone] Pulegone concentration μM
[menthone] Menthone concentration μM
[isomenthone] Isomenthone concentration μM
[NADPH] NADPH concentration μM
[NADP] NADP+ concentration μM

Strategies for estimating the kinetic parameter values

Standard Gibbs Free energy

The Gibbs free energy for PGR is -3.9565125 kcal.mol^-1. This value is estimated from the 'Contribution group' method by Latendresse, M. and is available from MetaCyc (EC 1.3.1.81) [4].

Calculating the Equilibrium Constant

The equilibrium constant can be calculated using the Van't Hoff Isotherm equation:



K_\mathrm{eq} = exp \left ( \cfrac {-ΔG^{°'}}{RT} \right )




 = exp \left (  \cfrac {-(XY \text { kJmol}^{-1})}{ (8.31 \text{ JK}^{-1} \text { mol}^{-1} * 289 K} \right )



 = exp \left (  \cfrac { XY \text { kJmol}^{-1} }{ 2401.59 \text{ JK}^{-1}\text { mol}^{-1} }\right)


= exp \left ( \cfrac{ XY \text { Jmol}^{-1}}{2401.59 \text{ JK}^{-1}\text { mol}^{-1}} \right)



=exp \left ( XY \right )


= (INSERT RESULT)


where;

Keq Equilibrium constant
-ΔG° Gibbs free energy change. For (INSERT ENZYME) it is (INSERT VALUE) kJmol-1
R Gas constant with a value of 8.31 JK-1mol-1
T Temperature which is always expressed in kelvin

Extracting Information from menthone Production Rates

A table will go here

Published Kinetic Parameter Values

Km Values

Parameter Directionality Substrate / Product Value unit Method notes References
Km Forward pulegone 2.3 µM Gene from peppermint oil gland secretory cell cDNA, expressed in E. coli, optimal pH 5.0, menthone:isomenthone ratio of 55:45 Ringer2003
Km Forward pulegone 2.9 µM Gene from peppermint oil gland secretory cell cDNA, expressed in E. coli, optimal pH 5.0, menthone:isomenthone ratio of 55:45, Km 2.3 +/- 0.6 Ringer2003
Km Forward NADPH 6.9 µM Gene from peppermint oil gland secretory cell cDNA, expressed in E. coli, optimal pH 5.0, menthone:isomenthone ratio of 55:45 Ringer2003

Detailed description of kinetic values obtained from literature

A more detailed description of the values listed above can be found here .

Simulations

The DBR model have been used to simulate the biotransformation experiment from published experiments. Click on the pictures below to learn more:

Simulating DBR BiotransformationDBR biotrans toogood simulation.png
About this image

References